Toward a Model for Backtracking and Dynamic Programming

We propose a model called priority branching trees (pBT) for backtracking and dynamic programming algorithms. Our model generalizes both the priority model of Borodin, Nielson and Rackoff, as well as a simple dynamic programming model due to Woeginger, and hence spans a wide spectrum of algorithms. After witnessing the strength of the model, we then show its limitations by providing lower bounds for algorithms in this model for several classical problems such as Interval Scheduling, Knapsack and Satisfiability.

[1]  Esther M. Arkin,et al.  Scheduling jobs with fixed start and end times , 1987, Discret. Appl. Math..

[2]  Michael Alekhnovich,et al.  Exponential Lower Bounds for the Running Time of DPLL Algorithms on Satisfiable Formulas , 2004, SODA '04.

[3]  Paul Helman,et al.  A common schema for dynamic programming and branch and bound algorithms , 1989, JACM.

[4]  Dimitris Achlioptas,et al.  Optimal myopic algorithms for random 3-SAT , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[5]  Allan Borodin,et al.  How Well Can Primal-Dual and Local-Ratio Algorithms Perform? , 2005, ICALP.

[6]  Magnús M. Halldórsson,et al.  Online independent sets , 2000, Theor. Comput. Sci..

[7]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[8]  David G. Mitchell,et al.  Finding hard instances of the satisfiability problem: A survey , 1996, Satisfiability Problem: Theory and Applications.

[9]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[10]  P. Helman,et al.  A Comprehensive Model of Dynamic Programming , 1985 .

[11]  L. A. Goodman,et al.  Social Choice and Individual Values , 1951 .

[12]  Alexander A. Razborov,et al.  Natural Proofs , 2007 .

[13]  Allan Borodin,et al.  Toward a Model for Backtracking and Dynamic Programming , 2005, Computational Complexity Conference.

[14]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[15]  David Pisinger,et al.  Where are the hard knapsack problems? , 2005, Comput. Oper. Res..

[16]  Béla Bollobás,et al.  Proving Integrality Gaps without Knowing the Linear Program , 2006, Theory Comput..

[17]  Ronald L. Rivest,et al.  Introduction to Algorithms, Second Edition , 2001 .

[18]  M. Held,et al.  Finite-State Processes and Dynamic Programming , 1967 .

[19]  Gerhard J. Woeginger,et al.  When Does a Dynamic Programming Formulation Guarantee the Existence of a Fully Polynomial Time Approximation Scheme (FPTAS)? , 2000, INFORMS J. Comput..

[20]  Michael Alekhnovich,et al.  Lower bounds for polynomial calculus: non-binomial case , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[21]  Rajeev Motwani,et al.  On syntactic versus computational views of approximability , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[22]  Lefteris M. Kirousis,et al.  Selecting Complementary Pairs of Literals , 2003, Electron. Notes Discret. Math..

[23]  Claude E. Shannon,et al.  The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..

[24]  Michael Alekhnovich Lower Bounds for k-DNF Resolution on Random 3-CNFs , 2005, STOC '05.

[25]  Alexander A. Razborov,et al.  Lower bounds for the polynomial calculus , 1998, computational complexity.

[26]  Jan Vondrák,et al.  Approximating the stochastic knapsack problem: the benefit of adaptivity , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[27]  Russell Impagliazzo,et al.  Models of Greedy Algorithms for Graph Problems , 2004, SODA '04.

[28]  Allan Borodin,et al.  The Power of Priority Algorithms for Facility Location and Set Cover , 2004, Algorithmica.

[29]  Oscar H. Ibarra,et al.  Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.

[30]  Oded Regev Priority algorithms for makespan minimization in the subset model , 2002, Inf. Process. Lett..

[31]  Jun Gu,et al.  Algorithms for the satisfiability (SAT) problem: A survey , 1996, Satisfiability Problem: Theory and Applications.

[32]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[33]  Allan Borodin,et al.  (Incremental) Priority Algorithms , 2002, SODA '02.

[34]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[35]  Eugene L. Lawler,et al.  Fast approximation algorithms for knapsack problems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[36]  Frits C. R. Spieksma,et al.  Interval selection: Applications, algorithms, and lower bounds , 2003, J. Algorithms.