Toric degeneration of Schubert varieties and Gelfand¿Tsetlin polytopes

This note constructs the flat toric degeneration of the manifold Fln of flags in Cn due to Gonciulea and Lakshmibai (Transform. Groups 1(3) (1996) 215) as an explicit GIT quotient of the Grobner degeneration due to Knutson and Miller (Grobner geometry of Schubert polynomials, Ann. Math. (2) to appear). This implies that Schubert varieties degenerate to reduced unions of toric varieties, associated to faces indexed by rc-graphs (reduced pipe dreams) in the Gelfand–Tsetlin polytope. Our explicit description of the toric degeneration of Fln provides a simple explanation of how Gelfand–Tsetlin decompositions for irreducible polynomial representations of GLn arise via geometric quantization.

[1]  Peter Littelmann,et al.  Cones, crystals, and patterns , 1998 .

[2]  Four positive formulae for type A quiver polynomials , 2003, math/0308142.

[3]  Sergey Fomin,et al.  Combinatorial $B_n$-analogues of Schubert polynomials , 1993, hep-th/9306053.

[4]  Chern class formulas for quiver varieties , 1998, math/9804041.

[5]  Sergey Fomin,et al.  Schubert Polynomials and the Nilcoxeter Algebra , 1994 .

[6]  V. LAKSHMIBAIAbstract Degenerations of Flag and Schubert Varieties to Toric Varieties , 1996 .

[7]  Ezra Miller,et al.  Gröbner geometry of Schubert polynomials , 2001 .

[8]  Ravi Vakil,et al.  A geometric Littlewood-Richardson rule , 2003, math/0302294.

[9]  Grothendieck classes of quiver varieties , 2001, math/0104029.

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[12]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[13]  R. Chirivì LS algebras and application to Schubert varieties , 2000 .

[14]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[15]  Sergey Fomin,et al.  The Yang-Baxter equation, symmetric functions, and Schubert polynomials , 1996, Discret. Math..

[16]  S. Sternberg,et al.  The Gelfand-Cetlin system and quantization of the complex flag manifolds , 1983 .

[17]  Arun Ram,et al.  Book Review: Young tableaux: With applications to representation theory and geometry , 1999 .

[18]  Ravi Vakil Schubert induction , 2003 .

[19]  Universal Schubert polynomials , 1997, alg-geom/9702012.

[20]  W. Fulton Introduction to Toric Varieties. , 1993 .

[21]  W. Fulton Young Tableaux: With Applications to Representation Theory and Geometry , 1996 .

[22]  William Fulton,et al.  Flags, Schubert polynomials, degeneracy loci, and determinantal formulas , 1992 .

[23]  Richard P. Stanley,et al.  Some Combinatorial Properties of Schubert Polynomials , 1993 .

[24]  Nantel Bergeron,et al.  RC-Graphs and Schubert Polynomials , 1993, Exp. Math..

[25]  Israel M. Gelfand,et al.  Finite-dimensional representations of the group of unimodular matrices , 1950 .

[26]  M. Kogan Schubert Geometry of Flag Varieties and Gelfand-Cetlin Theory , 2000 .

[27]  V. Lakshmibai,et al.  Degenerations of flag and Schubert varieties to toric varieties , 1996 .

[28]  Toric degenerations of Schubert varieties , 2000, math/0012165.