Cyclic adenosine 5'-monophosphate in Escherichia coli.

INTRODUCTION ................ ROLE OF CYCLIC AMP IN REGULATION OF GENE EXPRESSION .......... A Positive Element in Gene Expression ...................................... CRP .......................... :........................................... Direct stimulation of gene expression ...................................... Possible Role As a Negative Element ......................................... Does Cyclic AMP Rave Other Actions in E. co .............................. OPERON ACTIVATION BY CYCLIC AMP .................................... Genetic analysis of the lac promoter ....................................... CONTROL OF CYCLIC AMP LEVELS ........................................ Adenylate Cyclase ........................................................... Cyclic AMP Phosphodiesterase ...................................... Cyclic AMP Release ......................................................... Rate of Cyclic AMP Synthesis ............................................... CYCLIC AMP RECEPTOR PROTEIN ........................................ Physical properties of CRP ................................................ Cyclic AMP binding .... Promoter-specific DNAbinding. Effects of cyclic AMP on CRP structure .................................... CYCLIC AMP AND BACTERIOPHAGE A ...................................... CYCLIC GMP ................................................................ CONCLUSION ................................................................ LITERATURE CITED ........................................................

[1]  H. Bourne,et al.  A structural gene mutation affecting the regulatory subunit of cyclic AMP-dependent protein kinase in mouse lymphoma cells. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[2]  I. Pastan,et al.  Cyclic AMP regulates Catabolite and Transient Repression in E. coli , 1969, Nature.

[3]  A. D. Kaiser,et al.  Control of λ Repressor Synthesis , 1971 .

[4]  M. Pearson The role of adenosine 3',5'-cyclic monophosphate in the growth of bacteriophage lambda. , 1972, Virology.

[5]  A. Peterkofsky,et al.  Interaction of enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system with adenylate cyclase of Escherichia coli. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[6]  M. Jacquet,et al.  The step sensitive to catabolite repression and its reversal by 3'-5' cyclic AMP during induced synthesis of beta-galactosidase in E. coli. , 1969, Biochemical and Biophysical Research Communications - BBRC.

[7]  M. Hofnung Divergent operons and the genetic structure of the maltose B region in Escherichia coli K12. , 1974, Genetics.

[8]  J. Beckwith,et al.  Mutational alteration of the maximal level of Lac operon expression. , 1966, Cold Spring Harbor symposia on quantitative biology.

[9]  G. Brown,et al.  Orthophosphate and histone dependent polyphosphate kinase from E. coli. , 1973, Biochemical and biophysical research communications.

[10]  H. Varmus,et al.  Regulation of lac messenger ribonucleic acid synthesis by cyclic adenosine 3',5'-monophosphate and glucose. , 1970, The Journal of biological chemistry.

[11]  H. Varmus,et al.  Stimulation of lac mRNA synthesis by cyclic AMP in cell free extracts of Escherichia coli. , 1970, Biochemical and biophysical research communications.

[12]  J. Beckwith,et al.  Evidence for two sites in the lac promoter region. , 1972, Journal of molecular biology.

[13]  W. Loomis,et al.  THE RELATION OF CATABOLITE REPRESSION TO THE INDUCTION SYSTEM FOR BETA-GALACTOSIDASE IN ESCHERICHIA COLI. , 1964, Journal of molecular biology.

[14]  B. Magasanik,et al.  THE ROLES OF INDUCER AND CATABOLITE REPRESSOR IN THE SYNTHESIS OF BETA-GALACTOSIDASE BY ESCHERICHIA COLI. , 1964, Journal of molecular biology.

[15]  J. Beckwith,et al.  Genetic Characterization of Mutations Which Affect Catabolite-Sensitive Operons in Escherichia coli, Including Deletions of the Gene for Adenyl Cyclase , 1973, Journal of bacteriology.

[16]  G. Brooker,et al.  Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2'0 acetylation by acetic anhydride in aqueous solution. , 1975, Journal of cyclic nucleotide research.

[17]  M J Chamberlin,et al.  The selectivity of transcription. , 1974, Annual review of biochemistry.

[18]  F. Lipmann,et al.  Isolation of adenyl cyclase from Escherichia coli. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Peterkofsky,et al.  Measurements of rates of adenosine 3':5'-cyclic monophosphate synthesis in intact Escherichia coli B. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[20]  M. Saier,et al.  Coordinate regulation of adenylate cyclase and carbohydrate permeases by the phosphoenolpyruvate:sugar phosphotransferase system in Salmonella typhimurium. , 1975, The Journal of biological chemistry.

[21]  François Jacob,et al.  Regulation of Repressor Expression in λ , 1970 .

[22]  I. Pastan,et al.  Cyclic AMP in Metobolism , 1971 .

[23]  H. Eisen,et al.  Establishment of repression by lambdoid phage in catabolite activator protein and adenylate cyclase mutants of Escherichia coli. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[24]  B. Ames,et al.  Cyclic 3', 5'-adenosine monophosphate phosphodiesterase mutants of Salmonella typhimurium , 1975, Journal of bacteriology.

[25]  H. Echols,et al.  Negative Regulation by Lambda: Repression of Lambda RNA Synthesis in Vitro and Host Enzyme Synthesis in Vivo , 1971 .

[26]  A. D. Kaiser,et al.  Control of lambda repressor synthesis. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[27]  I. Pastan,et al.  [50] The purification and analysis of mechanism of action of a cyclic AMP-receptor protein from Escherichia coli , 1974 .

[28]  I. Pastan,et al.  Activation of transcription by guanosine 5'-diphosphate,3'-diphosphate, transfer ribonucleic acid, and novel protein from Escherichia coli. , 1975, The Journal of biological chemistry.

[29]  H. Echols,et al.  Establishment and maintenance of repression by bacteriophage lambda: the role of the cI, cII, and c3 proteins. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[30]  I. Pastan,et al.  Cyclic adenosine monophosphate receptor: loss of cAMP-dependent DNA binding activity after proteolysis in the presence of cyclic adenosine monophosphate. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[31]  E. Sutherland,et al.  ADENOSINE 3',5'-PHOSPHATE IN ESCHERICHIA COLI. , 1965, The Journal of biological chemistry.

[32]  I. Pastan,et al.  Regulation of beta-galactosidase synthesis in Escherichia coli by cyclic adenosine 3',5'-monophosphate. , 1968, The Journal of biological chemistry.

[33]  H. Echols,et al.  Establishment of repression by bacteriophage λ: Lack of a direct regulatory effect of cyclic AMP , 1973 .

[34]  J. Dodgson,et al.  Transmission of stability (telestability) in deoxyribonucleic acid. Physical and enzymatic studies on the duplex block polymer d(C15A15) - d(T15G15). , 1975, The Journal of biological chemistry.

[35]  I. Pastan,et al.  Cyclic 3'5-AMP: stimulation of beta-galactosidase and tryptophanase induction in E. coli. , 1968, Biochemical and biophysical research communications.

[36]  W. Reznikoff,et al.  Genetic regulation: the Lac control region. , 1975, Science.

[37]  Robert L. Perlman,et al.  Purification of and Properties of the Cyclic Adenosine 3',5'-Monophosphate Receptor Protein which Mediates Cyclic Adenosine 3',5'-Monophosphate-dependent Gene Transcription in Escherichia coli , 1971 .

[38]  B. Magasanik Catabolite repression. , 1961, Cold Spring Harbor symposia on quantitative biology.

[39]  E. D. De Robertis,et al.  On the control mechanism of bacterial growth by cyclic adenosine 3',5'-monophosphate. , 1973, Biochemical and biophysical research communications.

[40]  S. Prusiner,et al.  Adenosine 3':5'-cyclic monophosphate control of the enzymes of glutamine metabolism in Escherichia coli. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[41]  D. McGeoch,et al.  A mutant transcription factor that is activated by 3':5'-cyclic guanosine monophosphate. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[42]  W. Reznikoff,et al.  Catabolite Sensitive Site of the lac Operon , 1969, Nature.

[43]  R. Schleif,et al.  Different cyclic AMP requirements for induction of the arabinose and lactose operons of Escherichia coli. , 1973, Journal of molecular biology.

[44]  C W Parker,et al.  Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. , 1972, The Journal of biological chemistry.

[45]  I. Pastan,et al.  Repression of beta-galactosidase synthesis by glucose in phosphotransferase mutants of Escherichia coli. Repression in the absence of glucose phosphorylation. , 1969, The Journal of biological chemistry.

[46]  C. Wu,et al.  Conformational transitions of cyclic adenosine monophosphate receptor protein of Escherichia coli. A temperature-jump study. , 1974, Biochemistry.

[47]  J. Janeček,et al.  The enzymic degradation of 3',5' cyclic AMP in strains of E. Coli sensitive and resistant to catobolite repression. , 1969, Biochemical and biophysical research communications.

[48]  I. Pastan,et al.  Pleiotropic deficiency of carbohydrate utilization in an adenyl cyclase deficient mutant of Escherichia coli. , 1969, Biochemical and biophysical research communications.

[49]  M. Ide Adenyl cyclase of Escherichia coli. , 1969, Biochemical and biophysical research communications.

[50]  C. Gray,et al.  Nucleotide sequence of an RNA polymerase binding site from the DNA of bacteriophage fd. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[51]  M. Burger,et al.  The effect of catabolite repression and of cyclic 3',5' adenosine monophosphate on the translation of the lactose messenger RNA in Escherichia coli. , 1970, Biochemical and biophysical research communications.

[52]  H. Varmus,et al.  Regulation of gal messenger ribonucleic acid synthesis in Escherichia coli by 3',5'-cyclic adenosine monophosphate. , 1971, The Journal of biological chemistry.

[53]  H. V. Rickenberg Cyclic AMP in prokaryotes. , 1974, Annual review of microbiology.

[54]  A. Markovitz REGULATORY MECHANISMS FOR SYNTHESIS OF CAPSULAR POLYSACCHARIDE IN MUCOID MUTANTS OF ESCHERICHIA COLI K12. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[55]  M. Buettner,et al.  Cyclic Adenosine 3′,5′-Monophosphate in Escherichia coli , 1973, Journal of bacteriology.

[56]  M. Barkley,et al.  Measurements of unwinding of lac operator by repressor , 1974, Nature.

[57]  W. Loomis,et al.  Transient Repression of the lac Operon , 1967, Journal of bacteriology.

[58]  J. Majors,et al.  Specific binding of CAP factor to lac promoter DNA , 1975, Nature.

[59]  W. V. Shaw,et al.  Stimulation by cyclic AMP and ppGpp of chloramphenicol acetyl transferase synthesis. , 1973, Nature: New biology.

[60]  C. Wu,et al.  Conformational transitions of cyclic adenosine monophosphate receptor protein of Escherichia coli. A fluorescent probe study. , 1974, Biochemistry.

[61]  R. Block,et al.  Mechanism of initiation and repression of in vitro transcription of the lac operon of Escherichia coli. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[62]  M. Belfort,et al.  The roles of the lambda c3 gene and the Escherichia coli catabolite gene activation system in the establishment of lysogeny by bacteriophage lambda. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[63]  I. Pastan,et al.  Regulation of galactokinase synthesis by cyclic adenosine 3',5'-monophosphate in cell-free extracts of Escherichia coli. , 1971, The Journal of biological chemistry.

[64]  H. Varmus,et al.  The Regulation of lac Operon Transcription by Cyclic Adenosine 3′, 5′-Monophosphate , 1970 .

[65]  J. Krakow Cyclic adenosine monophosphate receptor: effect of cyclic AMP analogues on DNA binding and proteolytic inactivation. , 1975, Biochimica et biophysica acta.

[66]  H. Varmus,et al.  Regulation of lac transcription in Escherichia coli by cyclic adenosine 3',5'-monophosphate. Studies with deoxyribonucleic acid-ribonucleic acid hybridization and hybridization competition. , 1970, The Journal of biological chemistry.

[67]  I. Pastan,et al.  The cyclic AMP receptor of Escherichia coli: immunological studies in extracts of Escherichia coli and other organisms. , 1973, Biochimica et biophysica acta.

[68]  O. Rosen,et al.  Cyclic 3':5'-adenosine monophosphate in Escherichia coli during transient and catabolite repression. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[69]  B. Magasanik,et al.  Transcription of the lac operon of Escherichia coli. , 1974, The Journal of biological chemistry.

[70]  A. Riggs,et al.  Purification and DNA-binding properties of the catabolite gene activator protein. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[71]  J. Beckwith,et al.  Mechanism of activation of catabolite-sensitive genes: a positive control system. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[72]  M. Cohn,et al.  PHYSIOLOGY OF THE INHIBITION BY GLUCOSE OF THE INDUCED SYNTHESIS OF THE β-GALACTOSIDE-ENZYME SYSTEM OF ESCHERICHIA COLI , 1959, Journal of bacteriology.

[73]  I. Pastan,et al.  Cyclic Adenosine Monophosphate in Bacteria , 1970, Science.

[74]  F. Jacob,et al.  Effect of Glucose on the Formation of Bacteriophage λ , 1962, Nature.

[75]  Carl Frieden Metabolic Interconversions of Enzymes: Relation to the Hysteretic Response , 1972 .

[76]  P. Greengard,et al.  An adenosine 3',5'-monophosphate-dependent protein kinase from Escherichia coli. , 1969, The Journal of biological chemistry.

[77]  I. Pastan,et al.  Selective effects of MgCl2 and temperature on the initiation of transcription at lac, gal, and lambda promoters. , 1975, The Journal of biological chemistry.

[78]  E. Lin,et al.  Suppression of a pleiotropic mutant affecting glycerol dissimilation. , 1970, Biochemical and biophysical research communications.

[79]  A. Peterkofsky,et al.  Diverse directional changes of cGMP relative to cAMP in E. coli. , 1975, Biochemical and biophysical research communications.

[80]  J. Monod,et al.  Genetic regulatory mechanisms in the synthesis of proteins. , 1961, Journal of molecular biology.

[81]  W. Loomis,et al.  Nature of the Effector of Catabolite Repression of β-Galactosidase in Escherichia coli , 1966, Journal of bacteriology.

[82]  L. Sankaran,et al.  Differential inhibition of catabolite-sensitive enzyme induction by intercalating dyes. , 1973, Nature: New biology.

[83]  A. Gierer Model for DNA and Protein Interactions and the Function of the Operator , 1966, Nature.

[84]  B. Magasanik,et al.  Catabolite-insensitive revertants of lac promoter mutants. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[85]  C. Lazdunski,et al.  Different cyclic adenosine 3',5'-monophosphate requirements for induction of beta-galactosidase and tryptophanase. Effect of osmotic pressure on intracellular cyclic adenosine 3,5-monophosphate concentrations. , 1975, Biochemistry.

[86]  B. Ames,et al.  Adenosine 3':5'-cyclic monophosphate concentration in the bacterial host regulates the viral decision between lysogeny and lysis. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[87]  T. Yokota,et al.  Requirement of Adenosine 3′,5′-Cyclic Phosphate for Formation of the Phage Lambda Receptor in Escherichia coli , 1972, Journal of bacteriology.

[88]  E. Englesberg,et al.  Cell-free studies on the regulation of the arabinose operon. , 1971, Nature: New biology.

[89]  J. Hopkins A new class of promoter mutations in the lactose operon of Escherichia coli. , 1974, Journal of molecular biology.

[90]  W. Gilbert,et al.  The nucleotide sequence of the lac operator. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[91]  L. D. Nielsen,et al.  Cyclic 3′,5′-Adenosine Monophosphate Phosphodiesterase of Escherichia coli , 1973, Journal of bacteriology.

[92]  A. Riggs,et al.  Photochemical attachment of lac repressor to bromodeoxyuridine-substituted lac operator by ultraviolet radiation. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[93]  I. Pastan,et al.  In vitro transcription of the gal operon requires cyclic adenosine monophosphate and cyclic adenosine monophosphate receptor protein. , 1971, The Journal of biological chemistry.

[94]  D. Pribnow Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[95]  I. Pastan,et al.  On the mechanism of action of lac repressor. , 1971, Nature: New biology.

[96]  I. Pastan,et al.  Effect of adenosine 3',5'-monophosphate analogues on the activity of the cyclic adenosine 3',5'-monophosphate receptor in Escherichia coli. , 1972, The Journal of biological chemistry.

[97]  H. Echols,et al.  Establishment and Maintenance of Repression by Bacteriophage Lambda: The Role of the cI, cII, and cIII Proteins , 1971 .

[98]  A. Gilman A protein binding assay for adenosine 3':5'-cyclic monophosphate. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[99]  J. Pouysségur,et al.  Le métabolisme des hexuronides et des hexuronates chez Escherichia coli K 12: Aspects physiologiques et génétiques de sa régulation , 1974 .

[100]  R. Bernlohr,et al.  Cyclic guanosine 3':5'-monophosphate in Escherichia coli and Bacillus lichenformis. , 1974, The Journal of biological chemistry.

[101]  S. Roseman,et al.  Sugar transport. VI. Phosphoryl transfer in the lactose phosphotransferase system of Staphylococcus aureus. , 1973, The Journal of biological chemistry.

[102]  M. Ide Adenyl cyclase of Escherichiacoli , 1969 .

[103]  P. Brachet,et al.  Regulation of Repressor Expression in X * , 2022 .

[104]  G. Zubay,et al.  The stimulatory effect of cyclic adenosine 3'5'-monophosphate on DNA-directed synthesis of beta-galactosidase in a cell-free system. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[105]  M. Tao,et al.  Some properties of Escherichia coli adenyl cyclase. , 1970, Archives of biochemistry and biophysics.

[106]  J. Hesse,et al.  Adenosine 3':5'-cyclic monophosphate as mediator of catabolite repression in Escherichia coli. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[107]  G. Chaloner-Larsson,et al.  Abnormally high rate of cyclic AMP excretion from an Escherichia coli mutant deficient in cyclic AMP receptor protein. , 1974, Biochemical and biophysical research communications.

[108]  T. Yokota,et al.  Requirement of Adenosine 3′, 5′-Cyclic Phosphate for Flagella Formation in Escherichia coli and Salmonella typhimurium , 1970, Journal of bacteriology.

[109]  W KUNDIG,et al.  PHOSPHATE BOUND TO HISTIDINE IN A PROTEIN AS AN INTERMEDIATE IN A NOVEL PHOSPHO-TRANSFERASE SYSTEM. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[110]  I. Pastan,et al.  Cyclic AMP receptor protein of E. coli: its role in the synthesis of inducible enzymes. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[111]  I. Pastan,et al.  Activation of transcription at specific promoters by glycerol. , 1974, The Journal of biological chemistry.

[112]  A. D. Kaiser Mutations in a temperate bacteriophage affecting its ability to lysogenize Escherichia coli. , 1957, Virology.

[113]  G. Zubay,et al.  The messenger-directed synthesis of the α-fragment of the enzyme β-galactosidase , 1973 .

[114]  I. Pastan,et al.  Lac DNA, RNA polymerase and cyclic AMP receptor protein, cyclic AMP, lac repressor and inducer are the essential elements for controlled lac transcription. , 1971, Nature: New biology.

[115]  F. Gros,et al.  Effect of a low-molecular-weight DNA binding protein, H1 factor, on the in vitro transcription of the lactose operon in Escherichia coli. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[116]  Jon Beckwith,et al.  Regulation of the Lac Operon , 1967 .

[117]  I. Pastan,et al.  The binding of cyclic adenosine monophosphate receptor to deoxyribonucleic acid. , 1972, The Journal of biological chemistry.

[118]  W. Gilbert,et al.  The lac operator is DNA. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[119]  I. Pastan,et al.  The Role of Cyclic AMP in Bacteria , 1971 .

[120]  I. Pastan,et al.  Guanylate cyclase in Escherichia coli. Purification and properties. , 1975, The Journal of biological chemistry.