Matrix methods for computing eigenvalues of Sturm-Liouville problems of order four

Abstract This paper examines and develops matrix methods to approximate the eigenvalues of a fourth order Sturm–Liouville problem subjected to a kind of fixed boundary conditions. Furthermore, it extends the matrix methods for a kind of general boundary conditions. The idea of the methods comes from finite difference and Numerov’s methods as well as boundary value methods for second order regular Sturm–Liouville problems. Moreover, the determination of the correction term formulas of the matrix methods is investigated in order to obtain better approximations of the problem with fixed boundary conditions since the exact eigenvalues for q = 0 are known in this case. Finally, some numerical examples are illustrated.

[1]  Alan L. Andrew,et al.  Correction of Numerov's eigenvalue estimates , 1985 .

[2]  Christine Böckmann,et al.  Boundary value method for inverse Sturm-Liouville problems , 2009, Appl. Math. Comput..

[3]  Amin Boumenir,et al.  Sampling for the fourth-order Sturm-Liouville differential operator , 2003 .

[4]  Robert S. Anderssen,et al.  On the correction of finite difference eigenvalue approximations for sturm-liouville problems with general boundary conditions , 1984 .

[5]  Alan L. Andrew,et al.  Asymptotic correction of Numerov's eigenvalue estimates with natural boundary conditions , 2000 .

[6]  Lidia Aceto,et al.  Boundary Value Methods as an extension of Numerov's method for Sturm--Liouville eigenvalue estimates , 2009 .

[7]  Alan L. Andrew,et al.  Asymptotic correction of Numerov's eigenvalue estimates with general boundary conditions , 2003 .

[8]  J. Pryce Numerical Solution of Sturm-Liouville Problems , 1994 .

[9]  Mildred Hager Eigenvalue asymptotics for randomly perturbed non-self adjoint operators , 2007 .

[10]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[11]  Bilal Chanane,et al.  Fliess series approach to the computation of the eigenvalues of fourth-order Sturm-Liouville problems , 2002, Appl. Math. Lett..

[12]  A. A. Martynyuk Uniform asymptotic stability of a singularly perturbed system via the Lyapunov matrix-function , 1987 .

[13]  Lishan Liu,et al.  Positive solutions for nonlinear nth-order singular eigenvalue problem with nonlocal conditions , 2010 .

[14]  Lidia Aceto,et al.  BVMs for Sturm-Liouville Eigenvalue Estimates with General Boundary Conditions , 2009 .

[15]  J. Paine,et al.  Correction of Sturm-Liouville eigenvalue estimates , 1982 .

[16]  Leon Greenberg,et al.  An oscillation method for fourth-order, self-adjoint, two-point boundary value problems with nonlinear eigenvalues , 1991 .

[17]  Alan L. Andrew,et al.  Correction of finite element estimates for Sturm-Liouville eigenvalues , 1986 .

[18]  Robert S. Anderssen,et al.  On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems , 1981, Computing.

[19]  Marco Marletta,et al.  Algorithm 775: the code SLEUTH for solving fourth-order Sturm-Liouville problems , 1997, TOMS.

[20]  Lishan Liu,et al.  Positive solutions of fourth-order nonlinear singular Sturm-Liouville eigenvalue problems , 2007 .

[21]  Mohamed El-Gamel,et al.  An Efficient Technique for Finding the Eigenvalues of Fourth-Order Sturm-Liouville Problems , 2012 .

[22]  Alan L. Andrew,et al.  Asymptotic Correction of More Sturm–Liouville Eigenvalue Estimates , 2003 .

[23]  Bilal Chanane Accurate solutions of fourth order Sturm-Liouville problems , 2010, J. Comput. Appl. Math..

[24]  Marco Marletta,et al.  Oscillation theory and numerical solution of fourth-order Sturm—Liouville problems , 1995 .

[25]  W. N. Everitt THE STURM-LIOUVILLE PROBLEM FOR FOURTH-ORDER DIFFERENTIAL EQUATIONS , 1957 .

[26]  Daniel Lesnic,et al.  An efficient method for computing eigenelements of Sturm-Liouville fourth-order boundary value problems , 2006, Appl. Math. Comput..

[27]  John H. Mathews,et al.  Numerical Methods For Mathematics, Science, and Engineering , 1987 .

[28]  L. Brugnano,et al.  Solving differential problems by multistep initial and boundary value methods , 1998 .