Oceanic Island Basalts and Mantle Plumes: The Geochemical Perspective

Mantle plumes—which are usually, but not always, chemically distinct from the mid-ocean ridge basalt (MORB)—may be rooted in the core-mantle boundary and begin with large voluminous heads triggering massive eruptions or be headless and arise in the mid-mantle. Geochemistry provides convincing evidence that mantle plumes are 100–300°C hotter than normal upper mantle and that upwelling rates within the melting region are faster than beneath mid-ocean ridges. 186Os/188Os hints at the possibility of material from Earth's core in the Hawaiian plume, but this is not seen in other oceanic island basalt (OIB) and has not been confirmed by 182W/184W measurements. High 3He/4He in plumes does not require a primordial deep-mantle reservoir. The geochemical signature of mantle plumes originates primarily through melting in the upper mantle, probably through creation and subduction of oceanic lithosphere, but the details remain obscure. Plumes are lithologically heterogeneous, consisting of stringers of mafic material ...

[1]  D. Green,et al.  The application of olivine geothermometry to infer crystallization temperatures of parental liquids: implications for the temperature of MORB magmas , 2007 .

[2]  W. Dickinson Geomorphology and Geodynamics of the Cook-Austral Island-Seamount Chain in the South Pacific Ocean: Implications for Hotspots and Plumes , 1998 .

[3]  S. Hart,et al.  Nd and Sr isotope ratios and rare earth element abundances in Reykjanes Peninsula basalts evidence for mantle heterogeneity beneath Iceland , 1979 .

[4]  P. Hamilton,et al.  Geochemical modeling of mantle differentiation and crustal growth , 1979 .

[5]  J. Schilling Iceland Mantle Plume: Geochemical Study of Reykjanes Ridge , 1973, Nature.

[6]  D. Graham,et al.  186Os and 187Os enrichments and high-3He/4He sources in the Earth’s mantle: Evidence from Icelandic picrites , 2007 .

[7]  M. Willbold,et al.  Trace element composition of mantle end‐members: Implications for recycling of oceanic and upper and lower continental crust , 2006 .

[8]  E. Hauri Major-element variability in the Hawaiian mantle plume , 1996, Nature.

[9]  S. Duggen,et al.  New 40Ar / 39Ar age and geochemical data from seamounts in the Canary and Madeira volcanic provinces: Support for the mantle plume hypothesis , 2005 .

[10]  H. Prichard,et al.  Coupled 186Os and 187Os evidence for core-mantle interaction , 1998, Science.

[11]  H. Samuel,et al.  Beyond the thermal plume paradigm , 2005 .

[12]  R. W. Griffiths,et al.  Stirring and structure in mantle starting plumes , 1990 .

[13]  O. Leonardos,et al.  Late Cretaceous rift-related upwelling and melting of the Trindade starting mantle plume head beneath western Brazil , 1997 .

[14]  Matthew C. Smith,et al.  Magmatic effects of the Cobb hot spot on the Juan de Fuca Ridge , 2005 .

[15]  Albrecht W. Hofmann,et al.  Mantle plumes from ancient oceanic crust , 1982 .

[16]  S. Kay,et al.  Delamination and delamination magmatism , 1993 .

[17]  S. Hart,et al.  Rhenium abundances and systematics in oceanic basalts , 1997 .

[18]  M. Hirschmann,et al.  Experimental determination of trace element partitioning between garnet and silica‐rich liquid during anhydrous partial melting of MORB‐like eclogite , 2004 .

[19]  A. Hofmann,et al.  Melt percolation monitored by Os isotopes and HSE abundances: a case study from the mantle section of the Troodos Ophiolite , 2002 .

[20]  W. White Sources of oceanic basalts: Radiogenic isotopic evidence , 1985 .

[21]  E. Engdahl,et al.  Finite-Frequency Tomography Reveals a Variety of Plumes in the Mantle , 2004, Science.

[22]  W. J. Morgan,et al.  Plate Motions and Deep Mantle Convection , 1972 .

[23]  B. Wood,et al.  Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir , 2005 .

[24]  R. Carlson,et al.  Depletion and enrichment history of subcontinental lithospheric mantle: An Os, Sr, Nd and Pb isotopic study of ultramafic xenoliths from the northwestern Wyoming Craton , 1994 .

[25]  H. Newsom,et al.  Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth of the Earth's core , 1986 .

[26]  P. Michael,et al.  Peridotite composition from the North Atlantic: regional and tectonic variations and implications for partial melting , 1985 .

[27]  S. Goldstein,et al.  Evolution of helium isotopes in the Earth's mantle , 2005, Nature.

[28]  W. White,et al.  Deep mantle subduction flux , 2009 .

[29]  F. Albarède,et al.  A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites , 2002, Nature.

[30]  D. Graham Noble Gas Isotope Geochemistry of Mid-Ocean Ridge and Ocean Island Basalts: Characterization of Mantle Source Reservoirs , 2002 .

[31]  D. McKenzie,et al.  Mantle reservoirs and ocean island basalts , 1983, Nature.

[32]  P. Reiners Temporal‐compositional trends in intraplate basalt eruptions: Implications for mantle heterogeneity and melting processes , 2002 .

[33]  H. Gonnermann,et al.  Preserving noble gases in a convecting mantle , 2009, Nature.

[34]  Kevin Burke,et al.  Derivation of Large Igneous Provinces of the past 200 million years from long-term heterogeneities in the deep mantle , 2004 .

[35]  E. Bataillon Re-Os isotope systematics and platinum group element fractionation during mantle melt extraction: a study of massif and xenolith peridotite suites , 2004 .

[36]  Marc Spiegelman,et al.  Consequences of melt transport for uranium series disequilibrium in young lavas , 1993 .

[37]  M. Hirschmann,et al.  Alkalic magmas generated by partial melting of garnet pyroxenite , 2003 .

[38]  R. Rudnick,et al.  3.01 – Composition of the Continental Crust , 2003 .

[39]  M. Hirschmann,et al.  Partial melting experiments on a MORB‐like pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate , 2003 .

[40]  B. Mason Composition of the Earth , 1966, Nature.

[41]  Jean Besse,et al.  Three distinct types of hotspots in the Earth's mantle , 2002 .

[42]  Michael O. Garcia,et al.  Secondary Hawaiian volcanism formed by flexural arch decompression , 2005 .

[43]  B. Hanan,et al.  Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge , 2004, Nature.

[44]  M. Kurz,et al.  Helium solubility in olivine and implications for high 3He/4He in ocean island basalts , 2005, Nature.

[45]  F. Frey,et al.  Origin of Hawaiian tholeiite and alkalic basalt , 1983, Nature.

[46]  A. Sobolev,et al.  The Amount of Recycled Crust in Sources of Mantle-Derived Melts , 2007, Science.

[47]  A. McBirney,et al.  Petrology and geochemistry of the Galápagos Islands: Portrait of a pathological mantle plume , 1993 .

[48]  P. Wyllie Solidus curves, mantle plumes, and magma generation beneath Hawaii , 1988 .

[49]  T. Jordan,et al.  Comparisons Between Seismic Earth Structures and Mantle Flow Models Based on Radial Correlation Functions , 1993, Science.

[50]  J. Mahoney,et al.  Kerguelen hotspot source for Rajmahal Traps and Ninetyeast Ridge? , 1983, Nature.

[51]  W. J. Morgan,et al.  Two-stage melting and the geochemical evolution of the mantle: a recipe for mantle plum-pudding , 1999 .

[52]  J. H. Natland,et al.  Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas , 1992 .

[53]  D. L. Anderson Chemical plumes in the mantle , 1975 .

[54]  P. Clift,et al.  Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust , 2004 .

[55]  P. Roeder,et al.  Olivine-liquid equilibrium , 1970 .

[56]  Yaoling Niu,et al.  Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations , 2003 .

[57]  I. Campbell Testing the plume theory , 2007 .

[58]  T. Irifune,et al.  Constraints on element partition coefficients between MgSiO3 perovskite and liquid determined by direct measurements , 1988 .

[59]  R. Walker,et al.  186 Os^ 187 Os systematics of Gorgona Island komatiites: implications for early growth of the inner core , 2003 .

[60]  C. Devey,et al.  The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot , 2002 .

[61]  B. Dupré,et al.  Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts , 2004, Nature.

[62]  G. A. Macdonald Composition and Origin of Hawaiian Lavas , 1968 .

[63]  J. Morgan,et al.  Applications of the 190Pt186Os isotope system to geochemistry and cosmochemistry , 1997 .

[64]  S. Hart,et al.  Basalts from Iceland and Along the Reykjanes Ridge: Sr Isotope Geochemistry , 1973 .

[65]  B. Bourdon,et al.  Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon , 2008, Nature.

[66]  R. Clayton,et al.  Oxygen Isotope Geochemistry of Submarine Greenstones , 1972 .

[67]  P. Reiners,et al.  Length scales of mantle heterogeneities and their relationship to ocean island basalt geochemistry , 2004 .

[68]  P. Kent The Mesozoic development of aseismic continental margins , 1977, Journal of the Geological Society.

[69]  R. Carlson,et al.  ReOs, SmNd, and RbSr isotope evidence for thick Archaean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism , 1995 .

[70]  Hubert Staudigel,et al.  The return of subducted continental crust in Samoan lavas , 2007, Nature.

[71]  S. Kelley,et al.  Timing of Hot Spot—Related Volcanism and the Breakup of Madagascar and India , 1995, Science.

[72]  C. Hawkesworth,et al.  Mantle plumes and geochemistry , 2007 .

[73]  Charles H. Langmuir,et al.  The chemical composition of subducting sediment and its consequences for the crust and mantle , 1998 .

[74]  B. Weaver The origin of ocean island basalt end-member compositions: trace element and isotopic constraints , 1991 .

[75]  J. Blichert‐Toft,et al.  Geochemistry of Mauritius and the origin of rejuvenescent volcanism on oceanic island volcanoes , 2005 .

[76]  S. Eggins,et al.  Primary magmas and mantle temperatures , 2001 .

[77]  M. Kurz,et al.  Globally elevated titanium, tantalum, and niobium (TITAN) in ocean island basalts with high 3He/4He , 2008 .

[78]  G. Wasserburg,et al.  Petrogenetic mixing models and Nd-Sr isotopic patterns , 1979 .

[79]  B. Hanan,et al.  Depleted Iceland mantle plume geochemical signature: Artifact of multicomponent mixing? , 2000 .

[80]  G. Wasserburg,et al.  Inferences about magma sources and mantle structure from variations of ^(143)Nd/^(144)Nd , 1976 .

[81]  Donald L. Turcotte,et al.  Implications of a two-component marble-cake mantle , 1986, Nature.

[82]  B. Hardarson,et al.  Does depleted mantle form an intrinsic part of the Iceland plume? , 2003 .

[83]  M. Perfit,et al.  Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling , 2007 .

[84]  E. Nakamura,et al.  Boron isotopic constraints on the source of Hawaiian shield lavas , 2005 .

[85]  R. Carlson Physical and chemical evidence on the cause and source characteristics of flood basalt volcanism , 1991 .

[86]  Garrett Ito,et al.  Flow and melting of a heterogeneous mantle: 1. Method and importance to the geochemistry of ocean island and mid-ocean ridge basalts , 2005 .

[87]  K. Putirka Mantle potential temperatures at Hawaii, Iceland, and the mid‐ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven mantle plumes , 2005 .

[88]  G. Hanson Geochemical evolution of the suboceanic mantle , 1977, Journal of the Geological Society.

[89]  P. Stoffers,et al.  Active submarine volcanism on the society hotspot swell (west Pacific): A geochemical study , 1990 .

[90]  M. Norman,et al.  Tungsten isotope evidence that mantle plumes contain no contribution from the Earth's core , 2004, Nature.

[91]  J. O’Connor,et al.  South Atlantic hot spot-plume systems: 1. Distribution of volcanism in time and space , 1992 .

[92]  Jean Hernandez,et al.  The metasomatic alternative for ocean island basalt chemical heterogeneity , 2005 .

[93]  A. Sobolev,et al.  An olivine-free mantle source of Hawaiian shield basalts , 2005, Nature.

[94]  R. W. Griffiths,et al.  Implications of mantle plume structure for the evolution of flood basalts , 1990 .

[95]  J. Blusztajn,et al.  Genesis of the Western Samoa seamount province: age, geochemical fingerprint and tectonics , 2004 .

[96]  M. Richards,et al.  Flood Basalts and Hot-Spot Tracks: Plume Heads and Tails , 1989, Science.

[97]  Norman H. Sleep,et al.  Hotspots and Mantle Plumes' Some Phenomenology , 1990 .

[98]  K. Fischer,et al.  The origin of the Marquesas fracture zone ridge and its implications for the nature of hot spots , 1989 .

[99]  R. Duncan,et al.  Plate tectonic evolution of the Caribbean region in the mantle reference frame , 1984 .

[100]  A. Hofmann,et al.  Nb and Pb in oceanic basalts: new constraints on mantle evolution , 1986 .

[101]  A. Sobolev,et al.  Enriched, HIMU-type peridotite and depleted recycled pyroxenite in the Canary plume: A mixed-up mantle , 2009 .

[102]  G. Davies,et al.  Ocean bathymetry and mantle convection: 1. Large‐scale flow and hotspots , 1988 .

[103]  H. Craig,et al.  Oxygen isotope variations in ocean island basalt phenocrysts , 1997 .

[104]  S. Kelley,et al.  Crystal–melt partitioning of noble gases (helium, neon, argon, krypton, and xenon) for olivine and clinopyroxene , 2007 .

[105]  H. Taylor,et al.  Igneous rocks; I, Processes of isotopic fractionation and isotope systematics , 1986 .

[106]  M. Hirschmann,et al.  A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB , 1996 .

[107]  Paul D. Asimow,et al.  Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites , 2007 .

[108]  R. Walker,et al.  The debate over core–mantle interaction , 2005 .

[109]  K. Farley,et al.  Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end‐member: Evidence from the Samoan Volcanic Chain , 2004 .

[110]  I. Bindeman,et al.  Geochemistry of a new enriched mantle type locality in the northern hemisphere: Implications for the origin of the EM-I source , 2007 .

[111]  C. Lundstrom,et al.  U-series disequilibria in volcanic rocks from the Canary Islands: Plume versus lithospheric melting , 2003 .

[112]  J. Schilling Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges , 1991, Nature.

[113]  G. Davies,et al.  Stirring in three‐dimensional mantle convection models and implications for geochemistry: Passive tracers , 2007 .

[114]  J. Mahoney,et al.  Flow and melting of a heterogeneous mantle: 2. Implications for a chemically nonlayered mantle , 2005 .

[115]  R. Carlson,et al.  A new geochemical model for the Earth's mantle inferred from 146Sm–142Nd systematics , 2006 .

[116]  N. Ribe,et al.  Insights into the dynamics of mantle plumes from uranium-series geochemistry , 2006, Nature.

[117]  T. Staudacher,et al.  Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth's mantle , 1987 .

[118]  H. Dick,et al.  Mineralogic variability of the uppermost mantle along mid-ocean ridges , 1984 .

[119]  A. Hofmann,et al.  himu-em: The French Polynesian connection , 1992 .

[120]  J. Tuzo Wilson A possible origin of the Hawaiian Islands , 1963 .

[121]  Hans-Peter Bunge,et al.  Are splash plumes the origin of minor hotspots , 2006 .

[122]  Michael O. Garcia,et al.  Temporal helium isotopic variations within Hawaiian volcanoes: Basalts from Mauna Loa and Haleakala , 1987 .

[123]  R. Sutherland,et al.  Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow , 2004, Nature.

[124]  J. Lupton,et al.  HOTSPOT-RIDGE INTERACTION ALONG THE SOUTHEAST INDIAN RIDGE NEAR AMSTERDAM AND ST. PAUL ISLANDS : HELIUM ISOTOPE EVIDENCE , 1999 .

[125]  F. Chabaux,et al.  238U230Th226Ra disequilibria in volcanics: A new insight into melting conditions , 1994 .

[126]  R. Carlson,et al.  142Nd Evidence for Early (>4.53 Ga) Global Differentiation of the Silicate Earth , 2005, Science.

[127]  J. Morgan,et al.  Osmium-187 Enrichment in Some Plumes: Evidence for Core-Mantle Interaction? , 1995, Science.

[128]  K. Sims,et al.  Assessing the presence of garnet‐pyroxenite in the mantle sources of basalts through combined hafnium‐neodymium‐thorium isotope systematics , 2000 .

[129]  J. Escartín,et al.  Mid-Atlantic Ridge–Azores hotspot interactions: along-axis migration of a hotspot-derived event of enhanced magmatism 10 to 4 Ma ago , 1999 .

[130]  C. Herzberg,et al.  Phase equilibrium constraints on the origin of basalts, picrites, and komatiites , 1998 .

[131]  B. Hanan,et al.  Geochemical stages at Jasper Seamount and the origin of intraplate volcanoes , 2009 .

[132]  R. Walker,et al.  THE Re-Os ISOTOPE SYSTEM IN COSMOCHEMISTRY AND HIGH-TEMPERATURE GEOCHEMISTRY , 1998 .

[133]  J. Lawrence,et al.  Correlation of seismic and petrologic thermometers suggests deep thermal anomalies beneath hotspots , 2007 .

[134]  B. Hanan,et al.  Lead and Helium Isotope Evidence from Oceanic Basalts for a Common Deep Source of Mantle Plumes , 1996, Science.

[135]  A. Hofmann,et al.  Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution , 1982, Nature.

[136]  R. Huene,et al.  OBSERVATIONS AT CONVERGENT MARGINS CONCERNING SEDIMENT SUBDUCTION, SUBDUCTION EROSION, AND THE GROWTH , 1991 .

[137]  J. Whitehead,et al.  Dynamics of laboratory diapir and plume models , 1975 .

[138]  C. Langmuir,et al.  Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness , 1987 .

[139]  D. McKenzie,et al.  Melt Generation by Plumes: A Study of Hawaiian Volcanism , 1991 .

[140]  V. Morra,et al.  Petrogenesis of Late Cenozoic mafic alkaline rocks of the Nosy Be archipelago (northern Madagascar): relationships with the Comorean magmatism , 2000 .

[141]  J. Morgan Thermodynamics of pressure release melting of a veined plum pudding mantle: Geochemistry , 2001 .

[142]  M. Richards,et al.  Thermal entrainment by deflected mantle plumes , 1989, Nature.

[143]  P. Stoffers,et al.  First seamount age evidence for significantly slower African plate motion since 19 to 30 Ma , 1999 .

[144]  P. Molnar,et al.  Relative motions of hotspots in the Pacific, Atlantic and Indian Oceans since late Cretaceous time , 1987, Nature.

[145]  C. Chauvel,et al.  Melting of a complete section of recycled oceanic crust: Trace element and Pb isotopic evidence from Iceland , 2000 .

[146]  W. J. Morgan,et al.  Convection Plumes in the Lower Mantle , 1971, Nature.