Boosting Terahertz Photoconductive Antenna Performance with Optimised Plasmonic Nanostructures

Advanced nanophotonics penetrates into other areas of science and technology, ranging from applied physics to biology, which results in many fascinating cross-disciplinary applications. It has been recently demonstrated that suitably engineered light-matter interactions at the nanoscale can overcome the limitations of today’s terahertz (THz) photoconductive antennas, making them one step closer to many practical implications. Here, we push forward this concept by comprehensive numerical optimization and experimental investigation of a log-periodic THz photoconductive antenna coupled to a silver nanoantenna array. We shed light on the operation principles of the resulting hybrid THz antenna, providing an approach to boost its performance. By tailoring the size of silver nanoantennas and their arrangement, we obtain an enhancement of optical-to-THz conversion efficiency 2-fold larger compared with previously reported results for similar structures, and the strongest enhancement is around 1 THz, a frequency range barely achievable by other compact THz sources. We also propose a cost-effective fabrication procedure to realize such hybrid THz antennas with optimized plasmonic nanostructures via thermal dewetting process, which does not require any post processing and makes the proposed solution very attractive for applications.

[1]  Christopher W. Berry,et al.  Principles of Impedance Matching in Photoconductive Antennas , 2012 .

[2]  K. Cheung,et al.  Picosecond photoconducting Hertzian dipoles , 1984 .

[3]  T. Vartanyan,et al.  Changes in morphology and optical properties of silver island films on transparent dielectric substrates under exposure to laser radiation , 2016 .

[4]  Lukas Novotny,et al.  Optical Antennas , 2009 .

[5]  Reuven Gordon,et al.  Nanoplasmonic terahertz photoconductive switch on GaAs. , 2012, Nano letters.

[6]  rensen,et al.  Ultrafast local field dynamics in photoconductive THz antennas , 1993 .

[7]  Ke Yang,et al.  Biomedical Applications of Terahertz Spectroscopy and Imaging. , 2016, Trends in biotechnology.

[8]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[9]  J. B. Baxter,et al.  Terahertz spectroscopy. , 2011, Analytical chemistry.

[10]  T. Löffler,et al.  Radiation field screening in photoconductive antennae studied via pulsed terahertz emission spectroscopy , 2007 .

[11]  F. van Dijk,et al.  100 Gb/s Multicarrier THz Wireless Transmission System With High Frequency Stability Based on A Gain-Switched Laser Comb Source , 2015, IEEE Photonics Journal.

[12]  Andrei Gorodetsky,et al.  Quantum-dot based ultrafast photoconductive antennae for efficient THz radiation , 2016, SPIE LASE.

[13]  Edmund Clarke,et al.  Quantum dot materials for terahertz generation applications , 2016 .

[14]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[15]  A. Alú,et al.  Nanophotonics with 2D transition metal dichalcogenides [Invited]. , 2018, Optics express.

[16]  Zach DeVito,et al.  Opt , 2017 .

[17]  Nikolay V. Petrov,et al.  Methods of generating superbroadband terahertz pulses with femtosecond lasers , 2008 .

[18]  Experimental studies of the possibilities of diagnosing caries in the solid tissues of a tooth by means of terahertz radiation , 2014 .

[19]  Andrei Gorodetsky,et al.  Enhancement of terahertz photoconductive antenna operation by optical nanoantennas (Laser Photonics Rev. 11(1)/2017) , 2017 .

[20]  T. Vartanyan,et al.  Correlation between structural, optical, and electrical properties of self-assembled plasmonic nanostructures on the GaAs surface , 2015, Journal of Nanoparticle Research.

[21]  Pavel A. Belov,et al.  Controllable femtosecond laser‐induced dewetting for plasmonic applications , 2015, 1512.02172.

[22]  Zhifeng Ren,et al.  Metallic nanostructures for light trapping in energy-harvesting devices , 2014, Light: Science & Applications.

[23]  Cunlin Zhang,et al.  Terahertz wave reference-free phase imaging for identification of explosives , 2008 .

[24]  Anastasios D. Koulouklidis,et al.  Detection of Harmful Residues in Honey Using Terahertz Time-Domain Spectroscopy , 2013, Applied spectroscopy.

[25]  T. Vartanyan,et al.  Absorption and photoluminescence of epitaxial quantum dots in the near field of silver nanostructures , 2017 .

[26]  Xicheng Zhang,et al.  Wireless Data Transmission Method Using Pulsed THz Sliced Spectral Supercontinuum , 2018, IEEE Photonics Technology Letters.

[27]  강희정,et al.  17 , 1995, The Hatak Witches.

[28]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[29]  M Unlu,et al.  Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. , 2013, Nature communications.

[30]  J. Federici,et al.  THz imaging and sensing for security applications—explosives, weapons and drugs , 2005 .

[31]  Andrew G. Glen,et al.  APPL , 2001 .

[32]  Andrea Alù,et al.  Tuning the scattering response of optical nanoantennas with nanocircuit loads , 2008 .

[33]  T. Vartanyan,et al.  Fabrication and laser-assisted modification of the Ag particles ensembles supporting quadrupole plasmon oscillations , 2017 .

[34]  Charles A Schmuttenmaer,et al.  Exploring dynamics in the far-infrared with terahertz spectroscopy. , 2004, Chemical reviews.

[35]  Matthew C. Beard,et al.  Carrier Localization and Cooling in Dye-Sensitized Nanocrystalline Titanium Dioxide , 2002 .

[36]  M. Jarrahi,et al.  A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity , 2017, Scientific Reports.

[37]  T. Pertsch,et al.  Resonant metasurfaces at oblique incidence: interplay of order and disorder , 2014, Scientific Reports.

[38]  Euan Hendry,et al.  Subwavelength Terahertz Imaging of Graphene Photoconductivity , 2016, Nano letters.

[39]  Haiying Shen,et al.  TOP , 2019, Encyclopedia of Autism Spectrum Disorders.

[40]  Cyril C. Renaud,et al.  Advances in terahertz communications accelerated by photonics , 2016, Nature Photonics.

[41]  Hongkyu Park,et al.  Subsurface nanoimaging by broadband terahertz pulse near-field microscopy. , 2015, Nano letters.

[42]  Andrei Gorodetsky,et al.  Compact All-Quantum-Dot-Based Tunable THz Laser Source , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[43]  Pai-Yen Chen,et al.  A terahertz photomixer based on plasmonic nanoantennas coupled to a graphene emitter , 2013, Nanotechnology.

[44]  Jong Chul Ye,et al.  Enhancement of terahertz pulse emission by optical nanoantenna. , 2012, ACS nano.

[45]  Qingli Zhou,et al.  Optical property and spectroscopy studies on the explosive 2,4,6-trinitro-1,3,5-trihydroxybenzene in the terahertz range , 2008 .

[46]  N. Engheta Optical nanoantennas , 2014, 2014 IEEE Photonics Conference.

[47]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[48]  Ki-Hun Jeong,et al.  Terahertz photoconductive antenna with metal nanoislands. , 2012, Optics express.

[49]  Andrea Alù,et al.  Wireless at the nanoscale: optical interconnects using matched nanoantennas. , 2010, Physical review letters.

[50]  Andrea Alù,et al.  Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. , 2007, Physical review letters.

[51]  B. Fischer,et al.  Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy , 2002, Physics in medicine and biology.

[52]  M. Koch,et al.  Terahertz spectroscopy and imaging – Modern techniques and applications , 2011 .