PHASE: A Stochastic Formalism for Phase-Type Distributions

Models of non-Markovian systems expressed using stochastic formalisms often employ phase-type distributions in order to approximate the duration of transitions. We introduce a stochastic process calculus named PHASE which operates with phase-type distributions, and provide a step-by-step description of how PHASE processes can be translated into models supported by the probabilistic model checker PRISM. We then illustrate our approach by analysing the behaviour of a simple system involving both non-Markovian and Markovian transitions.

[1]  Mark Crovella,et al.  Performance Evaluation with Heavy Tailed Distributions , 2000, Computer Performance Evaluation / TOOLS.

[2]  Christel Baier,et al.  Validation of Stochastic Systems , 2004, Lecture Notes in Computer Science.

[3]  M. Kwiatkowska,et al.  Solving Infinite Stochastic Process Algebra Models Through Matrix-Geometric Methods , 1999 .

[4]  Muhammad Reza Pulungan,et al.  Reduction of acyclic phase-type representations , 2009 .

[5]  C. A. Petri,et al.  Concurrency Theory , 1986, Advances in Petri Nets.

[6]  Mario Bravetti,et al.  Tutte le Algebre Insieme: Concepts, Discussions and Relations of Stochastic Process Algebras with General Distributions , 2004, Validation of Stochastic Systems.

[7]  Joost-Pieter Katoen,et al.  Automated compositional Markov chain generation for a plain-old telephone system , 2000, Sci. Comput. Program..

[8]  Miklós Telek,et al.  PhFit: a general phase-type fitting tool , 2002, Proceedings International Conference on Dependable Systems and Networks.

[9]  François Baccelli,et al.  Quantitative Methods in Parallel Systems , 1995, Esprit Basic Research Series.

[10]  Holger Hermanns,et al.  Interactive Markov Chains , 2002, Lecture Notes in Computer Science.

[11]  Marcel F. Neuts,et al.  Matrix-geometric solutions in stochastic models - an algorithmic approach , 1982 .

[12]  Pedro R. D'Argenio,et al.  Algebras and Automata for Timed and Stochastic Systems , 1999 .

[13]  Mieke Massink,et al.  Reasoning about Interactive Systems with Stochastic Models , 2001, DSV-IS.

[14]  Håkan L. S. Younes Ymer: A Statistical Model Checker , 2005, CAV.

[15]  Philipp Reinecke,et al.  HyperStar: Phase-Type Fitting Made Easy , 2012, 2012 Ninth International Conference on Quantitative Evaluation of Systems.

[16]  Joost-Pieter Katoen,et al.  General Distributions in Process Algebra , 2002, European Educational Forum: School on Formal Methods and Performance Analysis.

[17]  Nuno Jardim Nunes,et al.  Interactive Systems. Design, Specification, and Verification , 2003, Lecture Notes in Computer Science.

[18]  Joost-Pieter Katoen,et al.  A compositional modelling and analysis framework for stochastic hybrid systems , 2012, Formal Methods in System Design.

[19]  Stephen Gilmore,et al.  PEPA Nets: A Structured Performance Modelling Formalism , 2002, Computer Performance Evaluation / TOOLS.

[20]  Julian Bradfield CONCUR '96: Concurrency Theory , 1996 .

[21]  Peter G. Harrison,et al.  Stochastic Process Algebra for Discrete Event Simulation , 1995 .

[22]  Joost-Pieter Katoen,et al.  Lectures on Formal Methods and PerformanceAnalysis , 2001, Lecture Notes in Computer Science.

[23]  Randolph Nelson,et al.  Probability, Stochastic Processes, and Queueing Theory , 1995 .

[24]  Roberto Gorrieri,et al.  Extended Markovian Process Algebra , 1996, CONCUR.

[25]  Jane Hillston,et al.  A compositional approach to performance modelling , 1996 .

[26]  Joost-Pieter Katoen,et al.  A Compositional Approach to Generalised semi-Markov Processes , 1998 .

[27]  Kebin Zeng,et al.  Logics and Models for Stochastic Analysis Beyond Markov Chains , 2012 .

[28]  Miklós Telek,et al.  PhFit: A General Phase-Type Fitting Tool , 2002, Computer Performance Evaluation / TOOLS.

[29]  Ren Asmussen,et al.  Fitting Phase-type Distributions via the EM Algorithm , 1996 .

[30]  Christel Baier,et al.  Approximate Symbolic Model Checking of Continuous-Time Markov Chains , 1999, CONCUR.

[31]  Juan F. Pérez,et al.  jPhase: an object-oriented tool for modeling phase-type distributions , 2006, SMCtools '06.

[32]  Verena Wolf,et al.  Equivalences on Phase Type Processes , 2008 .