Mars Science Laboratory Observations of the 2018/Mars Year 34 Global Dust Storm
暂无分享,去创建一个
Scott D. Guzewich | Mark T. Lemmon | C. L. Smith | Germán David Mendoza Martínez | A. De Vicente-Retortillo | Claire E. Newman | M. M. Baker | Charissa L. Campbell | Brittney A. Cooper | Javier Gómez-Elvira | Ari-Matti Harri | Donald M. Hassler | F. J. Martin-Torres | Timothy H. McConnochie | John E. Moores | Henrik Kahanpää | Alain S.J. Khayat | Mark I. Richardson | M. D. Smith | R. J. Sullivan | M. de la Torre Juárez | Ashwin R. Vasavada | D. Viudez-Moreiras | Cary Zeitlin | Maria-Paz Zorzano Mier | R. Sullivan | A. Vasavada | J. Gómez-Elvira | T. Mcconnochie | M. Smith | C. Newman | C. Zeitlin | J. Moores | A. Khayat | D. Hassler | Á. Vicente-Retortillo | H. Kahanpää | D. Viúdez‐Moreiras | F. Martín‐Torres | M. Baker | S. Guzewich | C. Campbell | C. L. Smith | B. Cooper | A. Harri | M. Lemmon | G. Martinez | M. Richardson | M. Torre Juárez | Maria‐Paz Zorzano Mier | T. McConnochie | Henrik Kahanpää | D. Víudez‐Moreiras | F. Martín-Torres
[1] Barney J. Conrath,et al. Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971 , 1975 .
[2] R. M. Henry,et al. Mars atmospheric phenomena during major dust storms, as measured at surface , 1979 .
[3] J. Pollack,et al. Properties and effects of dust particles suspended in the Martian atmosphere , 1979 .
[4] Richard W. Zurek,et al. Thermal tides and Martian dust storms: Direct evidence for coupling , 1979 .
[5] Robert M. Haberle,et al. Some effects of global dust storms on the atmospheric circulation of Mars , 1980 .
[6] R. Zurek,et al. Thermal tides in the dusty martian atmosphere: a verification of theory. , 1981, Science.
[7] Richard W. Zurek,et al. Martian great dust storms: An update , 1982 .
[8] Kevin Hamilton,et al. Comprehensive Model Simulation of Thermal Tides in the Martian Atmosphere , 1996 .
[9] R. John Wilson,et al. A general circulation model simulation of the Martian polar warming , 1997 .
[10] J. Murphy,et al. Mars' surface pressure tides and their behavior during global dust storms , 1998 .
[11] Matthew P. Larkin,et al. A Simple Thermodynamical Theory for Dust Devils , 1998 .
[12] M. J. Wolff,et al. An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere , 2000 .
[13] John C. Pearl,et al. Thermal Emission Spectrometer Observations of Martian Planet-Encircling Dust Storm 2001A , 2001 .
[14] Stephen R. Lewis,et al. Modeling the Martian dust cycle, 1. Representations of dust transport processes , 2002 .
[15] Mark I. Richardson,et al. A first look at dust lifting and dust storms near the south pole of Mars with a mesoscale model , 2002 .
[16] Andrew P. Ingersoll,et al. Cyclones, tides, and the origin of a cross‐equatorial dust storm on Mars , 2003 .
[17] J. L. Benson,et al. Yearly comparisons of the martian polar caps: 1999-2003 Mars Orbiter Camera observations , 2005 .
[18] Ashwin R. Vasavada,et al. Surface Dust Redistribution on Mars as Observed by the Mars Global Surveyor , 2006 .
[19] Mark I. Richardson,et al. Observations of the initiation and evolution of the 2001 Mars global dust storm , 2005 .
[20] Bruce A. Cantor,et al. MOC observations of the 2001 Mars planet-encircling dust storm , 2007 .
[21] Raymond E. Arvidson,et al. Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer , 2009 .
[22] Bruce A. Cantor,et al. Extension of atmospheric dust loading to high altitudes during the 2001 Mars dust storm: MGS TES limb observations , 2010 .
[23] Bruce A. Cantor,et al. Ultraviolet dust aerosol properties as observed by MARCI , 2010 .
[24] E. Sebastián,et al. REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover , 2012 .
[25] R. Anderson,et al. Mars Science Laboratory Mission and Science Investigation , 2012 .
[26] Scott D. Guzewich,et al. Thermal tides during the 2001 Martian global‐scale dust storm , 2014 .
[27] Javier Gómez-Elvira,et al. Diurnal variations of energetic particle radiation at the surface of Mars as observed by the Mars Science Laboratory Radiation Assessment Detector , 2014 .
[28] Tony Greicius,et al. Mars Science Laboratory - Curiosity Rover , 2015 .
[29] J. Bell,et al. Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission , 2014, 1403.4234.
[30] Michael H. Wong,et al. Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover , 2015 .
[31] Francesca Altieri,et al. Mars Express measurements of surface albedo changes over 2004–2010 , 2015 .
[32] M. Lemmon,et al. Convective vortices and dust devils at the MSL landing site: Annual variability , 2016 .
[33] Mark T. Lemmon,et al. A full martian year of line-of-sight extinction within Gale Crater, Mars as acquired by the MSL Navcam through sol 900 , 2016 .
[34] Mark T. Lemmon,et al. Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes , 2016 .
[35] Mark T. Lemmon,et al. Thermophysical Properties Along Curiosity's Traverse in Gale Crater, Mars, Derived from the REMS Ground Temperature Sensor , 2016 .
[36] Scott D. Guzewich,et al. Atmospheric tides in Gale Crater, Mars , 2016 .
[37] J. Murphy,et al. A year of convective vortex activity at Gale crater , 2016 .
[38] Mark T. Lemmon,et al. Determination of dust aerosol particle size at Gale Crater using REMS UVS and Mastcam measurements , 2017 .
[39] M. Lemmon,et al. Dust Devil Activity at the Curiosity Mars Rover Field Site , 2017 .
[40] Claire E. Newman,et al. Martian aeolian activity at the Bagnold Dunes, Gale Crater: The view from the surface and orbit , 2017 .
[41] Mark T. Lemmon,et al. The Mars Science Laboratory Curiosity rover Mastcam instruments: Preflight and in‐flight calibration, validation, and data archiving , 2017 .
[42] M D Smith,et al. The Vertical Dust Profile Over Gale Crater, Mars , 2017, Journal of geophysical research. Planets.
[43] Javier Gómez-Elvira,et al. Winds measured by the Rover Environmental Monitoring Station (REMS) during the Mars Science Laboratory (MSL) rover's Bagnold Dunes Campaign and comparison with numerical modeling using MarsWRF. , 2017, Icarus.
[44] M. D. Smith,et al. The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity , 2017 .
[45] Agustin Sanchez-Lavega,et al. A systematic search of sudden pressure drops on Gale crater during two Martian years derived from MSL/REMS data , 2018 .
[46] Ashwin R. Vasavada,et al. The Bagnold Dunes in Southern Summer: Active Sediment Transport on Mars Observed by the Curiosity Rover , 2017, Geophysical Research Letters.
[47] Timothy H. McConnochie,et al. Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy , 2017, Icarus (New York, N.Y. 1962).
[48] C. E. Newman,et al. Coarse Sediment Transport in the Modern Martian Environment , 2018, Journal of Geophysical Research: Planets.
[49] Anna Fedorova,et al. Water vapor in the middle atmosphere of Mars during the 2007 global dust storm , 2018 .
[50] Lori Neary,et al. The climatology of carbon monoxide and water vapor on Mars as observed by CRISM and modeled by the GEM-Mars general circulation model , 2018 .
[51] Claire E. Newman,et al. On the relationship between surface pressure, terrain elevation, and air temperature. Part I: The large diurnal surface pressure range at Gale Crater, Mars and its origin due to lateral hydrostatic adjustment , 2018, Planetary and Space Science.
[52] R. Hueso,et al. Seasonal Deposition and Lifting of Dust on Mars as Observed by the Curiosity Rover , 2018, Scientific Reports.
[53] J. Gómez-Elvira,et al. Gale surface wind characterization based on the Mars Science Laboratory REMS dataset. Part II: Wind probability distributions , 2019, Icarus.
[54] J. Gómez-Elvira,et al. Gale surface wind characterization based on the Mars Science Laboratory REMS dataset. Part I: Wind retrieval and Gale's wind speeds and directions , 2019, Icarus.