Mars Science Laboratory Observations of the 2018/Mars Year 34 Global Dust Storm

Mars Science Laboratory Curiosity rover observations of the 2018/Mars year 34 global/planet‐encircling dust storm represent the first in situ measurements of a global dust storm with dedicated meteorological sensors since the Viking Landers. The Mars Science Laboratory team planned and executed a science campaign lasting approximately 100 Martian sols to study the storm involving an enhanced cadence of environmental monitoring using the rover's meteorological sensors, cameras, and spectrometers. Mast Camera 880‐nm optical depth reached 8.5, and Rover Environmental Monitoring Station measurements indicated a 97% reduction in incident total ultraviolet solar radiation at the surface, 30K reduction in diurnal range of air temperature, and an increase in the semidiurnal pressure tide amplitude to 40 Pa. No active dust‐lifting sites were detected within Gale Crater, and global and local atmospheric dynamics were drastically altered during the storm. This work presents an overview of the mission's storm observations and initial results.

[1]  Barney J. Conrath,et al.  Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971 , 1975 .

[2]  R. M. Henry,et al.  Mars atmospheric phenomena during major dust storms, as measured at surface , 1979 .

[3]  J. Pollack,et al.  Properties and effects of dust particles suspended in the Martian atmosphere , 1979 .

[4]  Richard W. Zurek,et al.  Thermal tides and Martian dust storms: Direct evidence for coupling , 1979 .

[5]  Robert M. Haberle,et al.  Some effects of global dust storms on the atmospheric circulation of Mars , 1980 .

[6]  R. Zurek,et al.  Thermal tides in the dusty martian atmosphere: a verification of theory. , 1981, Science.

[7]  Richard W. Zurek,et al.  Martian great dust storms: An update , 1982 .

[8]  Kevin Hamilton,et al.  Comprehensive Model Simulation of Thermal Tides in the Martian Atmosphere , 1996 .

[9]  R. John Wilson,et al.  A general circulation model simulation of the Martian polar warming , 1997 .

[10]  J. Murphy,et al.  Mars' surface pressure tides and their behavior during global dust storms , 1998 .

[11]  Matthew P. Larkin,et al.  A Simple Thermodynamical Theory for Dust Devils , 1998 .

[12]  M. J. Wolff,et al.  An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere , 2000 .

[13]  John C. Pearl,et al.  Thermal Emission Spectrometer Observations of Martian Planet-Encircling Dust Storm 2001A , 2001 .

[14]  Stephen R. Lewis,et al.  Modeling the Martian dust cycle, 1. Representations of dust transport processes , 2002 .

[15]  Mark I. Richardson,et al.  A first look at dust lifting and dust storms near the south pole of Mars with a mesoscale model , 2002 .

[16]  Andrew P. Ingersoll,et al.  Cyclones, tides, and the origin of a cross‐equatorial dust storm on Mars , 2003 .

[17]  J. L. Benson,et al.  Yearly comparisons of the martian polar caps: 1999-2003 Mars Orbiter Camera observations , 2005 .

[18]  Ashwin R. Vasavada,et al.  Surface Dust Redistribution on Mars as Observed by the Mars Global Surveyor , 2006 .

[19]  Mark I. Richardson,et al.  Observations of the initiation and evolution of the 2001 Mars global dust storm , 2005 .

[20]  Bruce A. Cantor,et al.  MOC observations of the 2001 Mars planet-encircling dust storm , 2007 .

[21]  Raymond E. Arvidson,et al.  Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer , 2009 .

[22]  Bruce A. Cantor,et al.  Extension of atmospheric dust loading to high altitudes during the 2001 Mars dust storm: MGS TES limb observations , 2010 .

[23]  Bruce A. Cantor,et al.  Ultraviolet dust aerosol properties as observed by MARCI , 2010 .

[24]  E. Sebastián,et al.  REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover , 2012 .

[25]  R. Anderson,et al.  Mars Science Laboratory Mission and Science Investigation , 2012 .

[26]  Scott D. Guzewich,et al.  Thermal tides during the 2001 Martian global‐scale dust storm , 2014 .

[27]  Javier Gómez-Elvira,et al.  Diurnal variations of energetic particle radiation at the surface of Mars as observed by the Mars Science Laboratory Radiation Assessment Detector , 2014 .

[28]  Tony Greicius,et al.  Mars Science Laboratory - Curiosity Rover , 2015 .

[29]  J. Bell,et al.  Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission , 2014, 1403.4234.

[30]  Michael H. Wong,et al.  Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover , 2015 .

[31]  Francesca Altieri,et al.  Mars Express measurements of surface albedo changes over 2004–2010 , 2015 .

[32]  M. Lemmon,et al.  Convective vortices and dust devils at the MSL landing site: Annual variability , 2016 .

[33]  Mark T. Lemmon,et al.  A full martian year of line-of-sight extinction within Gale Crater, Mars as acquired by the MSL Navcam through sol 900 , 2016 .

[34]  Mark T. Lemmon,et al.  Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes , 2016 .

[35]  Mark T. Lemmon,et al.  Thermophysical Properties Along Curiosity's Traverse in Gale Crater, Mars, Derived from the REMS Ground Temperature Sensor , 2016 .

[36]  Scott D. Guzewich,et al.  Atmospheric tides in Gale Crater, Mars , 2016 .

[37]  J. Murphy,et al.  A year of convective vortex activity at Gale crater , 2016 .

[38]  Mark T. Lemmon,et al.  Determination of dust aerosol particle size at Gale Crater using REMS UVS and Mastcam measurements , 2017 .

[39]  M. Lemmon,et al.  Dust Devil Activity at the Curiosity Mars Rover Field Site , 2017 .

[40]  Claire E. Newman,et al.  Martian aeolian activity at the Bagnold Dunes, Gale Crater: The view from the surface and orbit , 2017 .

[41]  Mark T. Lemmon,et al.  The Mars Science Laboratory Curiosity rover Mastcam instruments: Preflight and in‐flight calibration, validation, and data archiving , 2017 .

[42]  M D Smith,et al.  The Vertical Dust Profile Over Gale Crater, Mars , 2017, Journal of geophysical research. Planets.

[43]  Javier Gómez-Elvira,et al.  Winds measured by the Rover Environmental Monitoring Station (REMS) during the Mars Science Laboratory (MSL) rover's Bagnold Dunes Campaign and comparison with numerical modeling using MarsWRF. , 2017, Icarus.

[44]  M. D. Smith,et al.  The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity , 2017 .

[45]  Agustin Sanchez-Lavega,et al.  A systematic search of sudden pressure drops on Gale crater during two Martian years derived from MSL/REMS data , 2018 .

[46]  Ashwin R. Vasavada,et al.  The Bagnold Dunes in Southern Summer: Active Sediment Transport on Mars Observed by the Curiosity Rover , 2017, Geophysical Research Letters.

[47]  Timothy H. McConnochie,et al.  Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy , 2017, Icarus (New York, N.Y. 1962).

[48]  C. E. Newman,et al.  Coarse Sediment Transport in the Modern Martian Environment , 2018, Journal of Geophysical Research: Planets.

[49]  Anna Fedorova,et al.  Water vapor in the middle atmosphere of Mars during the 2007 global dust storm , 2018 .

[50]  Lori Neary,et al.  The climatology of carbon monoxide and water vapor on Mars as observed by CRISM and modeled by the GEM-Mars general circulation model , 2018 .

[51]  Claire E. Newman,et al.  On the relationship between surface pressure, terrain elevation, and air temperature. Part I: The large diurnal surface pressure range at Gale Crater, Mars and its origin due to lateral hydrostatic adjustment , 2018, Planetary and Space Science.

[52]  R. Hueso,et al.  Seasonal Deposition and Lifting of Dust on Mars as Observed by the Curiosity Rover , 2018, Scientific Reports.

[53]  J. Gómez-Elvira,et al.  Gale surface wind characterization based on the Mars Science Laboratory REMS dataset. Part II: Wind probability distributions , 2019, Icarus.

[54]  J. Gómez-Elvira,et al.  Gale surface wind characterization based on the Mars Science Laboratory REMS dataset. Part I: Wind retrieval and Gale's wind speeds and directions , 2019, Icarus.