Discontinuous Galerkin methods for elliptic partial differential equations with random coefficients

This paper proposes and analyses two numerical methods for solving elliptic partial differential equations with random coefficients, under the finite noise assumption. First, the stochastic discontinuous Galerkin method represents the stochastic solution in a Galerkin framework. Second, the Monte Carlo discontinuous Galerkin method samples the coefficients by a Monte Carlo approach. Both methods discretize the differential operators by the class of interior penalty discontinuous Galerkin methods. Error analysis is obtained. Numerical results show the sensitivity of the expected value and variance with respect to the penalty parameter of the spatial discretization.

[1]  Mary F. Wheeler,et al.  Compatible algorithms for coupled flow and transport , 2004 .

[2]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[3]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[4]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[5]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[6]  Khosro Shahbazi,et al.  An explicit expression for the penalty parameter of the interior penalty method , 2022 .

[7]  Mary F. Wheeler,et al.  A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[8]  Mark Ainsworth,et al.  Technical Note: A note on the selection of the penalty parameter for discontinuous Galerkin finite element schemes , 2012 .

[9]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[10]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[11]  B. Rivière,et al.  Part II. Discontinuous Galerkin method applied to a single phase flow in porous media , 2000 .

[12]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[13]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[14]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[15]  R. Harrington Part II , 2004 .

[16]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[17]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[18]  F. Benth,et al.  Convergence Rates for Finite Element Approximations of Stochastic Partial Differential Equations , 1998 .

[19]  Ran Zhang,et al.  Finite Element Method and Discontinuous Galerkin Method for Stochastic Scattering Problem of Helmholtz Type in ℝd (d = 2, 3) , 2008 .

[20]  B. Rivière,et al.  Estimation of penalty parameters for symmetric interior penalty Galerkin methods , 2007 .

[21]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[22]  J. Norris Appendix: probability and measure , 1997 .

[23]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[24]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[25]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[26]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[27]  Lijun Bo,et al.  Discontinuous Galerkin method for elliptic stochastic partial differential equations on two and three dimensional spaces , 2007 .