Multi-symplectic integration of coupled non-linear Schrödinger system with soliton solutions

Systems of coupled non-linear Schrödinger equations with soliton solutions are integrated using the six-point scheme which is equivalent to the multi-symplectic Preissman scheme. The numerical dispersion relations are studied for the linearized equation. Numerical results for elastic and inelastic soliton collisions are presented. Numerical experiments confirm the excellent conservation of energy, momentum and norm in long-term computations and their relations to the qualitative behaviour of the soliton solutions.

[1]  Resonance- and phase-induced window sequences in vector-soliton collisions , 2001 .

[2]  U. Ascher,et al.  Multisymplectic box schemes and the Korteweg{de Vries equation , 2004 .

[3]  V.,et al.  On the theory of two-dimensional stationary self-focusing of electromagnetic waves , 2011 .

[4]  Multisymplectic Relative Equilibria, Multiphase Wavetrains, and Coupled NLS Equations , 2001 .

[5]  Mark J. Ablowitz,et al.  On discretizations of the vector nonlinear Schrödinger equation , 1998, solv-int/9810014.

[6]  Bülent Karasözen,et al.  Symplectic and multi-symplectic methods for coupled nonlinear Schrödinger equations with periodic solutions , 2007, Comput. Phys. Commun..

[7]  Yifa Tang,et al.  Symplectic and multi-symplectic methods for the nonlinear Schrodinger equation , 2002 .

[8]  Multisymplectic schemes for the nonlinear Klein-Gordon equation , 2002 .

[9]  T. Bridges Multi-symplectic structures and wave propagation , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  Thiab R. Taha,et al.  Numerical simulation of coupled nonlinear Schrödinger equation , 2001 .

[11]  C. Schober,et al.  Geometric integrators for the nonlinear Schrödinger equation , 2001 .

[12]  B. Cano,et al.  Conserved quantities of some Hamiltonian wave equations after full discretization , 2006, Numerische Mathematik.

[13]  J. Yang,et al.  Interactions of vector solitons. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Brian E. Moore A modified equations approach for multi-symplectic integration methods. , 2003 .

[15]  S. Reich,et al.  Numerical methods for Hamiltonian PDEs , 2006 .

[16]  Jian-Qiang Sun,et al.  Numerical study of the soliton waves of the coupled nonlinear Schrödinger system , 2004 .

[17]  Jian-Qiang Sun,et al.  Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system , 2003 .

[18]  M. Markus,et al.  Oscillations and turbulence induced by an activating agent in an active medium. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Alvaro L. Islas,et al.  Backward error analysis for multisymplectic discretizations of Hamiltonian PDEs , 2005, Math. Comput. Simul..

[20]  S. Reich,et al.  Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .

[21]  M. Qin,et al.  A multisymplectic variational integrator for the nonlinear Schrödinger equation , 2002 .

[22]  C. Schober,et al.  On the preservation of phase space structure under multisymplectic discretization , 2004 .

[23]  William E. Schiesser,et al.  Linear and nonlinear waves , 2009, Scholarpedia.

[24]  Soliton switch using birefringent optical fibers. , 1990, Optics letters.

[25]  Akira Hasegawa,et al.  Optical solitons in fibers , 1993, International Commission for Optics.

[26]  M. S. Ismail,et al.  Highly accurate finite difference method for coupled nonlinear Schrödinger equation , 2004, Int. J. Comput. Math..

[27]  Brian E. Moore,et al.  Backward error analysis for multi-symplectic integration methods , 2003, Numerische Mathematik.

[28]  Shikuo Liu,et al.  Collision Interactions of Solitons in a Baroclinic Atmosphere , 1995 .

[29]  Jason Frank,et al.  Linear PDEs and Numerical Methods That Preserve a Multisymplectic Conservation Law , 2006, SIAM J. Sci. Comput..

[30]  Jarmo Hietarinta,et al.  Inelastic Collision and Switching of Coupled Bright Solitons in Optical Fibers , 1997, solv-int/9703008.

[31]  Jianke Yang,et al.  Fractal structure in the collision of vector solitons , 2000, Physical review letters.

[32]  M. Qin,et al.  Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation , 2000 .