Search and Learn: On Dead-End Detectors, the Traps they Set, and Trap Learning

A key technique for proving unsolvability in classical planning are dead-end detectors ∆: effectively testable criteria sufficient for unsolvability, pruning (some) unsolvable states during search. Related to this, a recent proposal is the identification of traps prior to search, compact representations of non-goal state sets T that cannot be escaped. Here, we create new synergy across these ideas. We define a generalized concept of traps, relative to a given dead-end detector ∆, where T can be escaped, but only into dead-end states detected by ∆. We show how to learn compact representations of such T during search, extending the reach of ∆. Our experiments show that this can be quite beneficial. It improves coverage for many unsolvable benchmark planning domains and dead-end detectors ∆, in particular on resource-constrained domains where it outperforms the state of the art.

[1]  Jörg Hoffmann,et al.  "Distance"? Who Cares? Tailoring Merge-and-Shrink Heuristics to Detect Unsolvability , 2014, ECAI.

[2]  Jörg Hoffmann,et al.  Towards Clause-Learning State Space Search: Learning to Recognize Dead-Ends , 2016, AAAI.

[3]  S. Kupferschmid,et al.  Adapting an AI Planning Heuristic for Directed Model Checking , 2006, SPIN.

[4]  Mausam,et al.  Discovering hidden structure in factored MDPs , 2012, Artif. Intell..

[5]  Malte Helmert,et al.  The Fast Downward Planning System , 2006, J. Artif. Intell. Res..

[6]  S. Edelkamp Planning with Pattern Databases , 2014 .

[7]  Álvaro Torralba,et al.  Constrained Symbolic Search: On Mutexes, BDD Minimization and More , 2013, SOCS.

[8]  Álvaro Torralba SymPA : Symbolic Perimeter Abstractions for Proving Unsolvability , 2016 .

[9]  Jörg Hoffmann,et al.  Django : Unchaining the Power of Red-Black Planning , 2016 .

[10]  M. Fox,et al.  The 3rd International Planning Competition: Results and Analysis , 2003, J. Artif. Intell. Res..

[11]  Fahiem Bacchus,et al.  AIPS 2000 Planning Competition: The Fifth International Conference on Artificial Intelligence Planning and Scheduling Systems , 2001 .

[12]  Jörg Hoffmann,et al.  MS-Unsat and SimulationDominance : Merge-and-Shrink and Dominance Pruning for Proving Unsolvability , 2016 .

[13]  Jendrik Seipp,et al.  Fast Downward Aidos , 2016 .

[14]  Jörg Hoffmann,et al.  Resource-Constrained Planning: A Monte Carlo Random Walk Approach , 2012, ICAPS.

[15]  Christian J. Muise,et al.  Traps, Invariants, and Dead-Ends , 2016, ICAPS.

[16]  Kim G. Larsen,et al.  Fast Directed Model Checking Via Russian Doll Abstraction , 2008, TACAS.

[17]  M. Fox,et al.  Efficient Implementation of the Plan Graph in STAN , 2011, J. Artif. Intell. Res..

[18]  Martin Suda Property Directed Reachability for Automated Planning , 2014, ICAPS.

[19]  Blai Bonet,et al.  LP-Based Heuristics for Cost-Optimal Planning , 2014, ICAPS.

[20]  S. Edelkamp,et al.  The Deterministic Part of IPC-4: An Overview , 2005, J. Artif. Intell. Res..

[21]  Malik Ghallab,et al.  Planning with Sharable Resource Constraints , 1995, IJCAI.

[22]  Jörg Hoffmann,et al.  CLone : A Critical-Path Driven Clause Learner , 2016 .

[23]  Fahiem Bacchus,et al.  The AIPS '00 Planning Competition , 2001, AI Mag..

[24]  Jendrik Seipp,et al.  Fast Downward Dead-End Pattern Database , 2016 .

[25]  Jendrik Seipp,et al.  From Non-Negative to General Operator Cost Partitioning , 2015, AAAI.

[26]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[27]  Carmel Domshlak,et al.  Deterministic Oversubscription Planning as Heuristic Search: Abstractions and Reformulations , 2015, J. Artif. Intell. Res..

[28]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[29]  Christer Bäckström,et al.  Fast Detection of Unsolvable Planning Instances Using Local Consistency , 2013, SOCS.

[30]  Jörg Hoffmann,et al.  State space search nogood learning: Online refinement of critical-path dead-end detectors in planning , 2017, Artif. Intell..

[31]  Andrew Coles,et al.  A Hybrid LP-RPG Heuristic for Modelling Numeric Resource Flows in Planning , 2014, J. Artif. Intell. Res..

[32]  Subbarao Kambhampati,et al.  Planning Graph as a (Dynamic) CSP: Exploiting EBL, DDB and other CSP Search Techniques in Graphplan , 2000, J. Artif. Intell. Res..

[33]  Aaron R. Bradley,et al.  SAT-Based Model Checking without Unrolling , 2011, VMCAI.

[34]  Patrik Haslum,et al.  Admissible Heuristics for Optimal Planning , 2000, AIPS.

[35]  Carmel Domshlak,et al.  Red-black planning: A new systematic approach to partial delete relaxation , 2015, Artif. Intell..

[36]  Stefan Edelkamp,et al.  Directed explicit-state model checking in the validation of communication protocols , 2004, International Journal on Software Tools for Technology Transfer.

[37]  Scott Sanner,et al.  A Survey of the Seventh International Planning Competition , 2012, AI Mag..

[38]  David E. Smith Choosing Objectives in OverSubscription Planning , 2004 .

[39]  Patrik Haslum,et al.  Merge-and-Shrink Abstraction , 2014, J. ACM.

[40]  Patrik Haslum,et al.  Deterministic planning in the fifth international planning competition: PDDL3 and experimental evaluation of the planners , 2009, Artif. Intell..