Velocity-Scheduling Control for a Unicycle Mobile Robot: Theory and Experiments

Improvement over classical dynamic feedback linearization for a unicycle mobile robots is proposed. Compared to classical extension, the technique uses a higher-dimensional state extension, which allows rejecting a constant disturbance on the robot rotational axis. The proposed dynamic extension acts as a velocity scheduler that specifies, at each time instant, the ideal translational velocity that the robot should have. By using a higher-order extension, both the magnitude and the orientation of the velocity vector can be generated, which introduces robustness in the control scheme. Stability for both asymptotic convergence to a point and trajectory tracking is proven. The theoretical results are illustrated first in simulation, and then experimentally on the autonomous mobile robot Fouzy III.

[1]  Ilya Kolmanovsky,et al.  Developments in nonholonomic control problems , 1995 .

[2]  D. J. Trudnowski,et al.  Vibration control of a micro/macro-manipulator system , 1996 .

[3]  Zhong-Ping Jiang,et al.  A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots , 2004, IEEE Transactions on Robotics and Automation.

[4]  O. J. Sordalen,et al.  Exponential stabilization of mobile robots with nonholonomic constraints , 1992 .

[5]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[6]  Giuseppe Casalino,et al.  ON THE STABILIZATION OF THE UNICYCLE MODEL PROJECTING A HOLONOMIC SOLUTION , 2000 .

[7]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[8]  Zhong-Ping Jiang,et al.  Simultaneous tracking and stabilization of mobile robots: an adaptive approach , 2004, IEEE Transactions on Automatic Control.

[9]  E. Ryan On Brockett's Condition for Smooth Stabilizability and its Necessity in a Context of Nonsmooth Feedback , 1994 .

[10]  Panagiotis Tsiotras,et al.  Controllers for unicycle-type wheeled robots: Theoretical results and experimental validation , 2002, IEEE Trans. Robotics Autom..

[11]  Claude Samson,et al.  Feedback control of a nonholonomic wheeled cart in Cartesian space , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[12]  Philippe Martin,et al.  A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..

[13]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[14]  Henk Nijmeijer,et al.  Tracking Control of Mobile Robots: A Case Study in Backstepping , 1997, Autom..

[15]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[16]  Antonio Pedro Aguiar,et al.  Regulation of a nonholonomic dynamic wheeled mobile robot with parametric modeling uncertainty using Lyapunov functions , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[17]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[18]  A. Bloch,et al.  Control and stabilization of nonholonomic dynamic systems , 1992 .

[19]  Christopher M. Clark,et al.  Motion planning for formations of mobile robots , 2004, Robotics Auton. Syst..

[20]  D. Buccieri Jet-scheduling control for flat systems , 2008 .

[21]  Neville Hogan,et al.  Robust control of dynamically interacting systems , 1988 .

[22]  M. J. Yazdanpanah,et al.  Dynamic tracking control of nonholonomic mobile robot with model reference adaptation for uncertain parameters , 2003, 2003 European Control Conference (ECC).

[23]  Ching-Hung Lee,et al.  Tracking control of unicycle-modeled mobile robots using a saturation feedback controller , 2001, IEEE Trans. Control. Syst. Technol..

[24]  Kazuya Yoshida,et al.  Reaction null-space control of flexible structure mounted manipulator systems , 1999, IEEE Trans. Robotics Autom..

[25]  C. Samson Control of chained systems application to path following and time-varying point-stabilization of mobile robots , 1995, IEEE Trans. Autom. Control..

[26]  Marilena Vendittelli,et al.  WMR control via dynamic feedback linearization: design, implementation, and experimental validation , 2002, IEEE Trans. Control. Syst. Technol..

[27]  Amit Ailon,et al.  On controllability and trajectory tracking of a kinematic vehicle model , 2005, Autom..

[28]  Maolin Jin,et al.  Robust Compliant Motion Control of Robot With Nonlinear Friction Using Time-Delay Estimation , 2008, IEEE Transactions on Industrial Electronics.

[29]  Camillo J. Taylor,et al.  A vision-based formation control framework , 2002, IEEE Trans. Robotics Autom..

[30]  Mahmut Reyhanoglu,et al.  Nonlinear Control Of Wheeled Mobile Robots , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  J. Lévine,et al.  Sufficient conditions for dynamic state feedback linearization , 1991 .

[32]  Warren E. Dixon,et al.  Global exponential tracking control of a mobile robot system via a PE condition , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[33]  Zhong-Ping Jiang,et al.  Universal controllers for stabilization and tracking of underactuated ships , 2002, Syst. Control. Lett..

[34]  M. Fliess,et al.  Flatness, motion planning and trailer systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.