Minimizing joint-torques of the flexible redundant manipulator on the premise of vibration suppression

Purpose – The purpose of this paper is to examine a new idea of vibration control which minimizes joint‐torques and suppresses vibration of the flexible redundant manipulator.Design/methodology/approach – Using the kinematics redundancy feature of the flexible redundant manipulator, the self‐motion in the joint space can be properly chosen to both suppress vibration and minimize joint‐torques.Findings – The study shows that the flexible redundant manipulator still has the second optimization feature on the premise of vibration suppression. The second optimization feature can be used to minimize joint‐torques on the premise of vibration suppression.Research limitations/implications – To a flexible redundant manipulator, its joint‐torques and vibration can be reduced simultaneously via its kinematics redundancy feature.Practical implications – The method and algorithm discussed in the paper can be used to minimize joint‐torques and suppress vibration for the flexible redundant manipulator.Originality/value ...

[1]  Peter Eberhard,et al.  DYNAMIC ANALYSIS OF FLEXIBLE MANIPULATORS, A LITERATURE REVIEW , 2006 .

[2]  Weiliang Xu,et al.  Pre-posed configuration of flexible redundant robot manipulators for impact vibration alleviating , 2004, IEEE Transactions on Industrial Electronics.

[3]  Shuzhi Sam Ge,et al.  Model-free controller design for a single-link flexible smart materials robot , 2000 .

[4]  Seung-bok Choi,et al.  Quantitative feedback theory control of a single-link flexible manipulator featuring piezoelectric actuator and sensor , 1999 .

[5]  Yueqing Yu,et al.  Motion control of flexible robot manipulators via optimizing redundant configurations , 2001 .

[6]  Dong Sun,et al.  A PZT actuator control of a single-link flexible manipulator based on linear velocity feedback and actuator placement , 2004 .

[7]  Kazem Kazerounian,et al.  An alternative method for minimization of the driving forces in redundant manipulators , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[8]  John M. Hollerbach,et al.  Redundancy resolution of manipulators through torque optimization , 1987, IEEE J. Robotics Autom..

[9]  Lee Heow Pueh Motions With Minimal Joint Torques for Redundant Manipulators , 1993 .

[10]  Mouhacine Benosman,et al.  Control of flexible manipulators: A survey , 2004, Robotica.

[11]  Weiliang Xu,et al.  Point-to-Point trajectory planning of flexible redundant robot manipulators using genetic algorithms , 2002, Robotica.

[12]  Luong A. Nguyen,et al.  Dynamic control of flexible, kinematically redundant robot manipulators , 1992, IEEE Trans. Robotics Autom..

[13]  Ling-li Cui,et al.  Optimum structure design of flexible manipulators based on GA , 2003, Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems.

[14]  K. Chandrashekhara,et al.  A study of single-link robots fabricated from orthotropic composite materials , 1990 .

[15]  J. S. Lamancusa,et al.  Optimum structural design of robotic manipulators with fiber reinforced composite materials , 1990 .

[16]  A. Nedungadi,et al.  A Local Solution with Global Characteristics for the Joint Torque Optimization of a Redundant Manipulator , 1989 .

[17]  Yue Shigang Weak-vibration configurations for flexible robot manipulators with kinematic redundancy , 2000 .

[18]  Lu Zhen,et al.  Method for Dynamic Modeling of Flexible Manipulators , 1999 .

[19]  Fei-Yue Wang,et al.  Minimum-weight robot arm for a specified fundamental frequency , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.