A Unified Approach to Combinatorial Formulas for Schubert Polynomials

Schubert polynomials were introduced in the context of the geometry of flag varieties. This paper investigates some of the connections not yet understood between several combinatorial structures for the construction of Schubert polynomials; we also present simplifications in some of the existing approaches to this area. We designate certain line diagrams for permutations known as rc-graphs as the main structure. The other structures in the literature we study include: semistandard Young tableaux, Kohnert diagrams, and balanced labelings of the diagram of a permutation. The main tools in our investigation are certain operations on rc-graphs, which correspond to the coplactic operations on tableaux, and thus define a crystal graph structure on rc-graphs; a new definition of these operations is presented. One application of these operations is a straightforward, purely combinatorial proof of a recent formula (due to Buch, Kresch, Tamvakis, and Yong), which expresses Schubert polynomials in terms of products of Schur polynomials. In spite of the fact that it refers to many objects and results related to them, the paper is mostly self-contained.

[1]  Laurent Manivel,et al.  Symmetric Functions Schubert Polynomials and Degeneracy Loci , 2001 .

[2]  Mikhail Kogan,et al.  Generalization of Schensted insertion algorithm to the cases of hooks and semi-shuffles , 2002, J. Comb. Theory, Ser. A.

[3]  Weintrauben, Polynome, Tableaux , 2006 .

[4]  Paul H. Edelman,et al.  Balanced tableaux , 1987 .

[5]  N. S. Barnett,et al.  Private communication , 1969 .

[6]  Ezra Miller,et al.  Gröbner geometry of Schubert polynomials , 2001 .

[7]  Victor Reiner,et al.  Percentage-Avoiding, Northwest Shapes and Peelable Tableaux , 1998, J. Comb. Theory, Ser. A.

[8]  Sergey Fomin,et al.  The Yang-Baxter equation, symmetric functions, and Schubert polynomials , 1996, Discret. Math..

[9]  R. Winkel A DERIVATION OF KOHNERT'S ALGORITHM FROM MONK'S RULE , 2002 .

[10]  Frank Sottile,et al.  Skew Schubert functions and the Pieri formula for flag manifolds , 2001 .

[11]  Ezra Miller Mitosis recursion for coefficients of Schubert polynomials , 2003, J. Comb. Theory, Ser. A.

[12]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[13]  Peter Littelmann,et al.  A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras , 1994 .

[14]  Skew Schubert polynomials , 2002, math/0202090.

[15]  C. S. Seshadri,et al.  Standard monomial theory , 1981 .

[16]  L. Manivel Fonctions symétriques, polynômes de Schubert et lieux de dégénérescence , 1998 .

[17]  A. Lascoux Double Crystal Graphs , 2003 .

[18]  Richard P. Stanley,et al.  Some Combinatorial Properties of Schubert Polynomials , 1993 .

[19]  Nantel Bergeron,et al.  A Combinatorial Construction of the Schubert Polynomials , 1992, J. Comb. Theory, Ser. A.

[20]  Nantel Bergeron,et al.  RC-Graphs and Schubert Polynomials , 1993, Exp. Math..

[21]  Rudolf Winkel,et al.  Diagram Rules for the Generation of Schubert Polynomials , 1999, J. Comb. Theory A.

[22]  A. Yong,et al.  Schubert polynomials and quiver formulas , 2002, math/0211300.

[23]  Peter Littelmann,et al.  Paths and root operators in representation theory , 1995 .

[24]  B Kostant,et al.  The nil Hecke ring and cohomology of G/P for a Kac-Moody group G. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[25]  I. G. MacDonald,et al.  Notes on Schubert polynomials , 1991 .

[26]  Victor Reiner,et al.  Key Polynomials and a Flagged Littlewood-Richardson Rule , 1995, J. Comb. Theory A.

[27]  I. Gel'fand,et al.  SCHUBERT CELLS AND COHOMOLOGY OF THE SPACES G/P , 1973 .

[28]  Sergey Fomin,et al.  Schubert Polynomials and the Nilcoxeter Algebra , 1994 .

[29]  Sergey Fomin,et al.  Noncommutative schur functions and their applications , 2006, Discret. Math..

[30]  Sergey Fomin,et al.  Balanced Labellings and Schubert Polynomials , 1997, Eur. J. Comb..