Binary Hole Transport Layer Enables Stable Perovskite Solar Cells with PCE Exceeding 24%

[1]  Y. Leng,et al.  Polaron mobility modulation by bandgap engineering in black phase α-FAPbI3 , 2022, Journal of Energy Chemistry.

[2]  Zhanhua Wei,et al.  Moisture-triggered fast crystallization enables efficient and stable perovskite solar cells , 2022, Nature Communications.

[3]  K. Sun,et al.  Oxidation of Spiro-OMeTAD in High-Efficiency Perovskite Solar Cells. , 2022, ACS applied materials & interfaces.

[4]  Hongwei Wang,et al.  Ultra-high moisture stability perovskite films, soaking in water over 360 minutes , 2022, Chemical Engineering Journal.

[5]  Meng Li,et al.  Recombination Pathways in Perovskite Solar Cells , 2022, Advanced Materials Interfaces.

[6]  C. Brabec,et al.  Molecular Doping of a Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells , 2022, Chemistry of Materials.

[7]  K. Sun,et al.  Simultaneous Interfacial Modification and Crystallization Control by Biguanide Hydrochloride for Stable Perovskite Solar Cells with PCE of 24.4% , 2021, Advanced materials.

[8]  L. Meng,et al.  Multifunctional Polymer Framework Modified SnO2 Enabling a Photostable α-FAPbI3 Perovskite Solar Cell with Efficiency Exceeding 23% , 2021, ACS Energy Letters.

[9]  Kwang Soo Kim,et al.  Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes , 2021, Nature.

[10]  Yang Yang,et al.  Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation , 2021, Nature Photonics.

[11]  Tai-De Li,et al.  CO2 doping of organic interlayers for perovskite solar cells , 2021, Nature.

[12]  Jinsong Hu,et al.  Electrical Loss Management by Molecularly Manipulating Dopant-free Poly(3-hexylthiophene) towards 16.93% CsPbI2Br Solar Cells. , 2021, Angewandte Chemie.

[13]  F. Brunetti,et al.  Modified P3HT materials as hole transport layers for flexible perovskite solar cells , 2021 .

[14]  J. Noh,et al.  Spontaneous interface engineering for dopant-free poly(3-hexylthiophene) perovskite solar cells with efficiency over 24% , 2021 .

[15]  Chang-Qi Ma,et al.  Synergetic effects of electrochemical oxidation of Spiro-OMeTAD and Li+ ion migration for improving the performance of n–i–p type perovskite solar cells , 2021, Journal of Materials Chemistry A.

[16]  Tingting Liu,et al.  Multifunctional Two-Dimensional Conjugated Materials for Dopant-Free Perovskite Solar Cells with Efficiency Exceeding 22% , 2021, ACS Energy Letters.

[17]  S. Ito,et al.  Control of Molecular Orientation of Spiro-OMeTAD on Substrates. , 2020, ACS applied materials & interfaces.

[18]  U. Rothlisberger,et al.  Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells , 2020, Science.

[19]  Andrew H. Proppe,et al.  Regulating strain in perovskite thin films through charge-transport layers , 2020, Nature Communications.

[20]  Seong Sik Shin,et al.  Defect-Tolerant Sodium-Based Dopant in Charge Transport Layers for Highly Efficient and Stable Perovskite Solar Cells , 2020 .

[21]  R. Faccio,et al.  Unraveling the Lithium Bis(trifluoromethanesulfonyl)imide (LiTFSI) Doping Mechanism of Regioregular Poly(3-hexylthiophene): Experimental and Theoretical Study , 2020 .

[22]  Yongfang Li,et al.  A “σ-Hole”-Containing Volatile Solid Additive Enabling 16.5% Efficiency Organic Solar Cells , 2020, iScience.

[23]  Zhike Liu,et al.  Controlled n‐Doping in Air‐Stable CsPbI2Br Perovskite Solar Cells with a Record Efficiency of 16.79% , 2020, Advanced Functional Materials.

[24]  Q. Gong,et al.  Minimizing non-radiative recombination losses in perovskite solar cells , 2019, Nature Reviews Materials.

[25]  N. Park,et al.  Multifunctional Chemical Linker Imidazoleacetic Acid Hydrochloride for 21% Efficient and Stable Planar Perovskite Solar Cells , 2019, Advanced materials.

[26]  J. Noh,et al.  Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) , 2019, Nature.

[27]  Y. Meng,et al.  the Role of tBP-LiTFSI Complexes in Perovskite Solar Cells. , 2018 .

[28]  Edward H. Sargent,et al.  Challenges for commercializing perovskite solar cells , 2018, Science.

[29]  M. Li,et al.  PEDOT:PSS monolayers to enhance the hole extraction and stability of perovskite solar cells , 2018 .

[30]  D. Cahen,et al.  Understanding how excess lead iodide precursor improves halide perovskite solar cell performance , 2018, Nature Communications.

[31]  Gang-Young Lee,et al.  Gradated Mixed Hole Transport Layer in a Perovskite Solar Cell: Improving Moisture Stability and Efficiency. , 2017, ACS applied materials & interfaces.

[32]  Bo Chen,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[33]  I. Han,et al.  Flexible and highly efficient perovskite solar cells with a large active area incorporating cobalt-doped poly(3-hexylthiophene) for enhanced open-circuit voltage , 2017 .

[34]  Ying Shirley Meng,et al.  Role of 4-tert-Butylpyridine as a Hole Transport Layer Morphological Controller in Perovskite Solar Cells. , 2016, Nano letters.

[35]  C. Zhong,et al.  Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering , 2016, Science Advances.

[36]  M. Nazeeruddin,et al.  Charge Transfer Dynamics from Organometal Halide Perovskite to Polymeric Hole Transport Materials in Hybrid Solar Cells. , 2015, The journal of physical chemistry letters.

[37]  Anders Hagfeldt,et al.  Integrated Design of Organic Hole Transport Materials for Efficient Solid‐State Dye‐Sensitized Solar Cells , 2015 .

[38]  Wallace W. H. Wong,et al.  A molecular nematic liquid crystalline material for high-performance organic photovoltaics , 2015, Nature Communications.

[39]  P. Müller‐Buschbaum The Active Layer Morphology of Organic Solar Cells Probed with Grazing Incidence Scattering Techniques , 2014, Advanced materials.

[40]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[41]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[42]  D. Bradley,et al.  The nature of in-plane skeleton Raman modes of P3HT and their correlation to the degree of molecular order in P3HT:PCBM blend thin films. , 2011, Journal of the American Chemical Society.

[43]  J. Grey,et al.  Resonance chemical imaging of polythiophene/fullerene photovoltaic thin films: mapping morphology-dependent aggregated and unaggregated C=C Species. , 2009, Journal of the American Chemical Society.

[44]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[45]  Gang Li,et al.  Vertical Phase Separation in Poly(3‐hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells , 2009 .

[46]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[47]  L. Qu,et al.  Fabrication of highly hydrophobic surfaces of conductive polythiophene , 2003 .

[48]  H. Sirringhaus,et al.  Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene) , 2003 .

[49]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[50]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[51]  A. Pron,et al.  SERS spectra of poly(3‐hexylthiophene) in oxidized and unoxidized states , 1998 .