FORK-seq: replication landscape of the Saccharomyces cerevisiae genome by nanopore sequencing

[1]  Hennion,et al.  organic-chemistry/RepNano: Publication Hennion , 2020 .

[2]  M. Seki,et al.  Recent advances in the detection of base modifications using the Nanopore sequencer , 2019, Journal of Human Genetics.

[3]  Carolin A. Müller,et al.  Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads , 2018, Nature Methods.

[4]  D. Egli,et al.  Detection of base analogs incorporated during DNA replication by nanopore sequencing , 2019, bioRxiv.

[5]  B. Audit,et al.  Mapping DNA replication with nanopore sequencing , 2018 .

[6]  M. Watson,et al.  Faculty Opinions recommendation of Whale watching with BulkVis: A graphical viewer for Oxford Nanopore bulk fast5 files. , 2018, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[7]  A. Genovesio,et al.  High-throughput optical mapping of replicating DNA , 2017, bioRxiv.

[8]  Kyle N. Klein,et al.  Genome-Wide Identification of Early-Firing Human Replication Origins by Optical Replication Mapping , 2017, bioRxiv.

[9]  Minh Duc Cao,et al.  Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning , 2017, bioRxiv.

[10]  Winston Timp,et al.  Detecting DNA cytosine methylation using nanopore sequencing , 2017, Nature Methods.

[11]  Jordan M. Eizenga,et al.  Mapping DNA Methylation with High Throughput Nanopore Sequencing , 2017, Nature Methods.

[12]  D. Remus,et al.  Chromatin Constrains the Initiation and Elongation of DNA Replication. , 2017, Molecular cell.

[13]  J. Diffley,et al.  Chromatin Controls DNA Replication Origin Selection, Lagging-Strand Synthesis, and Replication Fork Rates , 2017, Molecular cell.

[14]  Tomáš Vinař,et al.  DeepNano: Deep recurrent neural networks for base calling in MinION nanopore reads , 2016, PloS one.

[15]  S. Bell,et al.  Chromosome Duplication in Saccharomyces cerevisiae , 2016, Genetics.

[16]  O. Hyrien,et al.  Single-molecule, antibody-free fluorescent visualisation of replication tracts along barcoded DNA molecules. , 2016, The International journal of developmental biology.

[17]  Matei David,et al.  Nanocall: an open source basecaller for Oxford Nanopore sequencing data , 2016, bioRxiv.

[18]  Y. D'Aubenton-Carafa,et al.  Replication landscape of the human genome , 2016, Nature Communications.

[19]  Kevin Karplus,et al.  Analysis of nanopore data using hidden Markov models , 2015, Bioinform..

[20]  D. MacAlpine,et al.  Mcm2-7 Is an Active Player in the DNA Replication Checkpoint Signaling Cascade via Proposed Modulation of Its DNA Gate , 2015, Molecular and Cellular Biology.

[21]  J. Diffley,et al.  Regulated Eukaryotic DNA Replication Origin Firing with Purified Proteins , 2015, Nature.

[22]  Toshio Tsukiyama,et al.  Initiation of DNA Replication from Non-Canonical Sites on an Origin-Depleted Chromosome , 2014, PloS one.

[23]  Aaron R. Quinlan,et al.  Poretools: a toolkit for analyzing nanopore sequence data , 2014, bioRxiv.

[24]  Thomas Wieland,et al.  Alignment-Annotator web server: rendering and annotating sequence alignments , 2014, Nucleic Acids Res..

[25]  D. Remus,et al.  Origin plasticity during budding yeast DNA replication in vitro , 2014, The EMBO journal.

[26]  J. Diffley,et al.  Prereplicative complexes assembled in vitro support origin-dependent and independent DNA replication , 2014, The EMBO journal.

[27]  D. Dryden,et al.  Highlights of the DNA cutters: a short history of the restriction enzymes , 2013, Nucleic acids research.

[28]  Ryuichiro Nakato,et al.  The dynamics of genome replication using deep sequencing , 2013, Nucleic acids research.

[29]  Renata Retkute,et al.  High-Resolution Replication Profiles Define the Stochastic Nature of Genome Replication Initiation and Termination , 2013, Cell reports.

[30]  Duncan J. Smith,et al.  Quantitative, genome-wide analysis of eukaryotic replication initiation and termination. , 2013, Molecular cell.

[31]  Alain Arneodo,et al.  Multiscale analysis of genome-wide replication timing profiles using a wavelet-based signal-processing algorithm , 2012, Nature Protocols.

[32]  John Bechhoefer,et al.  Regulation of DNA Replication within the Immunoglobulin Heavy-Chain Locus During B Cell Commitment , 2012, PLoS biology.

[33]  Cheuk C. Siow,et al.  OriDB, the DNA replication origin database updated and extended , 2011, Nucleic Acids Res..

[34]  Olivier Hyrien,et al.  Do replication forks control late origin firing in Saccharomyces cerevisiae? , 2011, Nucleic acids research.

[35]  T. Glover,et al.  REV1 and polymerase ζ facilitate homologous recombination repair , 2011, Nucleic acids research.

[36]  Ying Cheng,et al.  The European Nucleotide Archive , 2010, Nucleic Acids Res..

[37]  Grant W. Brown,et al.  Diversity of Eukaryotic DNA Replication Origins Revealed by Genome-Wide Analysis of Chromatin Structure , 2010, PLoS genetics.

[38]  Andrea Cocito,et al.  Replication termination at eukaryotic chromosomes is mediated by Top2 and occurs at genomic loci containing pausing elements. , 2010, Molecular cell.

[39]  John Bechhoefer,et al.  Modeling genome-wide replication kinetics reveals a mechanism for regulation of replication timing , 2010, Molecular systems biology.

[40]  Renata Retkute,et al.  Mathematical modelling of whole chromosome replication , 2010, Nucleic acids research.

[41]  S. Bell,et al.  Conserved nucleosome positioning defines replication origins. , 2010, Genes & development.

[42]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[43]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[44]  Zhifeng Shao,et al.  DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI. , 2008, Journal of molecular biology.

[45]  J. Weissenbach,et al.  DNA replication origin interference increases the spacing between initiation events in human cells. , 2006, Molecular biology of the cell.

[46]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[47]  Ronald W. Davis,et al.  Replication dynamics of the yeast genome. , 2001, Science.

[48]  T. Kelly,et al.  Regulation of chromosome replication. , 2000, Annual review of biochemistry.

[49]  J. Rine,et al.  Origin recognition complex (ORC) in transcriptional silencing and DNA replication in S. cerevisiae , 1994 .

[50]  S. Bell,et al.  Yeast origin recognition complex functions in transcription silencing and DNA replication. , 1993, Science.

[51]  J. Rine,et al.  Origin recognition complex (ORC) in transcriptional silencing and DNA replication in S. cerevisiae. , 1993, Science.

[52]  K. Nasmyth,et al.  Yeast origin recognition complex is involved in DNA replication and transcriptional silencing , 1993, Nature.

[53]  D. Botstein,et al.  A group of interacting yeast DNA replication genes. , 1991, Genes & development.

[54]  W. L. Fangman,et al.  Activation of replication origins within yeast chromosomes. , 1991, Annual review of cell biology.

[55]  B. Tye,et al.  Mutants of S. cerevisiae defective in the maintenance of minichromosomes. , 1984, Genetics.

[56]  R. W. Davis,et al.  Isolation and characterisation of a yeast chromosomal replicator , 1979, Nature.