Binding of a group II intron-encoded reverse transcriptase/maturase to its high affinity intron RNA binding site involves sequence-specific recognition and autoregulates translation.

[1]  K. Coffman,et al.  Secondary , 2020, Definitions.

[2]  A. Lambowitz,et al.  Mechanism of maturase‐promoted group II intron splicing , 2001, The EMBO journal.

[3]  T. Cech,et al.  A stem-loop of Tetrahymena telomerase RNA distant from the template potentiates RNA folding and telomerase activity. , 2001, Biochemistry.

[4]  F. Bachand,et al.  Functional Regions of Human Telomerase Reverse Transcriptase and Human Telomerase RNA Required for Telomerase Activity and RNA-Protein Interactions , 2001, Molecular and Cellular Biology.

[5]  James R. Mitchell,et al.  RNA Binding Domain of Telomerase Reverse Transcriptase , 2001, Molecular and Cellular Biology.

[6]  A. Lambowitz,et al.  Multiple Homing Pathways Used by Yeast Mitochondrial Group II Introns , 2000, Molecular and Cellular Biology.

[7]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[8]  L. Zhou,et al.  Regulation of intron function: efficient splicing in vivo of a bacterial group II intron requires a functional promoter within the intron , 2000, Molecular microbiology.

[9]  S. Inouye,et al.  Highly Specific Recognition of Primer RNA Structures for 2′-OH Priming Reaction by Bacterial Reverse Transcriptases* , 1999, The Journal of Biological Chemistry.

[10]  A. Lambowitz,et al.  A reverse transcriptase/maturase promotes splicing by binding at its own coding segment in a group II intron RNA. , 1999, Molecular cell.

[11]  R. Saldanha,et al.  RNA and protein catalysis in group II intron splicing and mobility reactions using purified components. , 1999, Biochemistry.

[12]  J. V. Moran,et al.  Group II intron reverse transcriptase in yeast mitochondria. Stabilization and regulation of reverse transcriptase activity by the intron RNA. , 1999, Journal of molecular biology.

[13]  T. Eickbush,et al.  The age and evolution of non-LTR retrotransposable elements. , 1999, Molecular biology and evolution.

[14]  J. Licht,et al.  Telomerase RNA function in recombinant Tetrahymena telomerase. , 1999, Genes & development.

[15]  M. Belfort,et al.  Retrohoming of a Bacterial Group II Intron Mobility via Complete Reverse Splicing, Independent of Homologous DNA Recombination , 1998, Cell.

[16]  T. Steitz,et al.  Metals, Motifs, and Recognition in the Crystal Structure of a 5S rRNA Domain , 1997, Cell.

[17]  M. Belfort,et al.  A bacterial group II intron encoding reverse transcriptase, maturase, and DNA endonuclease activities: biochemical demonstration of maturase activity and insertion of new genetic information within the intron. , 1997, Genes & development.

[18]  A. Lambowitz,et al.  De novo and DNA primer-mediated initiation of cDNA synthesis by the mauriceville retroplasmid reverse transcriptase involve recognition of a 3' CCA sequence. , 1997, Journal of molecular biology.

[19]  J. Murray,et al.  The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein-RNA interactions. , 1997, Journal of molecular biology.

[20]  A. Lambowitz,et al.  Mobility of Yeast Mitochondrial Group II Introns: Engineering a New Site Specificity and Retrohoming via Full Reverse Splicing , 1997, Cell.

[21]  L. Kay,et al.  α Helix-RNA Major Groove Recognition in an HIV-1 Rev Peptide-RRE RNA Complex , 1996, Science.

[22]  C. Shearman,et al.  Splicing of a group II intron in a functional transfer gene of Lactococcus lactis , 1996, Molecular microbiology.

[23]  D. Mills,et al.  Splicing of a group II intron involved in the conjugative transfer of pRS01 in lactococci , 1996, Journal of bacteriology.

[24]  M. Belfort,et al.  Retrohoming: cDNA-Mediated Mobility of Group II Introns Requires a Catalytic RNA , 1996, Cell.

[25]  A. Lambowitz,et al.  A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility , 1995, Cell.

[26]  P. Perlman,et al.  Group II intron mobility occurs by target DNA-primed reverse transcription , 1995, Cell.

[27]  T. Eickbush,et al.  RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element , 1995, Molecular and cellular biology.

[28]  Lars Liljas,et al.  Crystal structure of an RNA bacteriophage coat protein–operator complex , 1994, Nature.

[29]  J. V. Moran,et al.  Splicing defective mutants of the COXI gene of yeast mitochondrial DNA: initial definition of the maturase domain of the group II intron aI2. , 1994, Nucleic acids research.

[30]  J. V. Moran,et al.  Reverse transcriptase activity associated with maturase-encoding group II introns in yeast mitochondria , 1993, Cell.

[31]  John M. Logsdon,et al.  The recent origins of introns. , 1991 .

[32]  Michael R. Green,et al.  HIV-1 rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA , 1991, Cell.

[33]  H. Wang,et al.  The Neurospora mitochondrial tyrosyl-tRNA synthetase is sufficient for group I intron splicing in vitro and uses the carboxy-terminal tRNA-binding domain along with other regions. , 1991, Genes & development.

[34]  T. Cavalier-smith,et al.  Intron phylogeny: a new hypothesis. , 1991, Trends in genetics : TIG.

[35]  R. E. Rose,et al.  The nucleotide sequence of pACYC184 , 1988, Nucleic Acids Res..

[36]  E. Bergantino,et al.  An mRNA maturase is encoded by the first intron of the mitochondrial gene for the subunit I of cytochrome oxidase in S. cerevisiae , 1983, Cell.

[37]  O. Uhlenbeck,et al.  Interaction of R17 coat protein with its RNA binding site for translational repression. , 1983, Journal of biomolecular structure & dynamics.

[38]  T. Eickbush,et al.  Origins and Evolution of Retrotransposons , 2002 .

[39]  M. Belfort,et al.  Mobile Introns: Pathways and Proteins , 2002 .

[40]  George E. Fox,et al.  Database of non-canonical base pairs found in known RNA structures , 2000, Nucleic Acids Res..

[41]  A. Lambowitz,et al.  18 Group I and Group II Ribozymes as RNPs: Clues to the Past and Guides to the Future , 1999 .

[42]  D. Turner,et al.  Secondary structure model of the RNA recognized by the reverse transcriptase from the R2 retrotransposable element. , 1997, RNA.

[43]  F. Michel,et al.  Structure and activities of group II introns. , 1995, Annual review of biochemistry.

[44]  I. Tinoco APPENDIX 1: Structures of Base Pairs Involving at Least Two Hydrogen Bonds , 1993 .

[45]  M. Belfort,et al.  Introns as mobile genetic elements. , 1993, Annual review of biochemistry.

[46]  O. Uhlenbeck,et al.  Specific interaction between RNA phage coat proteins and RNA. , 1991, Progress in nucleic acid research and molecular biology.

[47]  A. Martinez-Arias,et al.  Beta-galactosidase gene fusions for analyzing gene expression in escherichia coli and yeast. , 1983, Methods in enzymology.

[48]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .