Scale-free quantitative unique continuation and equidistribution estimates for solutions of elliptic differential equations
暂无分享,去创建一个
[1] M. Tautenhahn,et al. Scale-free and quantitative unique continuation for infinite dimensional spectral subspaces of Schr\"odinger operators , 2016, 1609.07408.
[2] Matthias Täufer,et al. Harmonic Analysis and Random Schrödinger Operators , 2016 .
[3] Elon Lindenstrauss,et al. Quantum Ergodicity and Averaging Operators on the Sphere , 2015, 1505.03887.
[4] M. Tautenhahn,et al. Sampling Inequality for $$L^2$$L2-Norms of Eigenfunctions, Spectral Projectors, and Weyl Sequences of Schrödinger Operators , 2015, 1504.00554.
[5] Ivica Naki'c,et al. Scale-free uncertainty principles and Wegner estimates for random breather potentials , 2014, 1410.5273.
[6] A. Klein,et al. Quantitative unique continuation principle for Schr\"odinger Operators with Singular Potentials , 2014, 1408.1992.
[7] Ivan Veseli'c,et al. Discrete alloy-type models: Regularity of distributions and recent results , 2014, 1403.7329.
[8] Nalini Anantharaman,et al. Quantum ergodicity on large regular graphs , 2013, 1304.4343.
[9] Laurent Bakri. Carleman Estimates for the Schrödinger Operator. Applications to Quantitative Uniqueness , 2013 .
[10] Constanza Rojas-Molina,et al. Scale-Free Unique Continuation Estimates and Applications to Random Schrödinger Operators , 2012, 1210.5623.
[11] A. Klein. Unique Continuation Principle for Spectral Projections of Schrödinger Operators and Optimal Wegner Estimates for Non-ergodic Random Schrödinger Operators , 2012, Communications in Mathematical Physics.
[12] Jérôme Le Rousseau,et al. On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations , 2012 .
[13] J. Bourgain,et al. Bounds on the density of states for Schrödinger operators , 2011, 1112.1716.
[14] Fr'ed'eric Klopp,et al. Enhanced Wegner and Minami Estimates and Eigenvalue Statistics of Random Anderson Models at Spectral Edges , 2011, Annales Henri Poincaré.
[15] A. Klein,et al. A comprehensive proof of localization for continuous Anderson models with singular random potentials , 2011, 1105.0213.
[16] Gunther Uhlmann,et al. Inverse problems for the anisotropic Maxwell equations , 2009, 0905.3275.
[17] J. Combes,et al. An optimal Wegner estimate and its application to the global continuity of the integrated density of states for random Schrödinger operators , 2006, math-ph/0605029.
[18] J. Bourgain,et al. On localization in the continuous Anderson-Bernoulli model in higher dimension , 2005 .
[19] P. Sarnak,et al. Arithmetic and Equidistribution of Measures on the Sphere , 2002, math/0212100.
[20] Igor Kukavica,et al. Quantitative uniqueness for second-order elliptic operators , 1998 .
[21] H. Donnelly. Nodal sets for sums of eigenfunctions on Riemannian manifolds , 1994 .
[22] S. Zelditch. Quantum ergodicity on the sphere , 1992 .
[23] C. Fefferman,et al. Nodal sets of eigenfunctions on Reimannian manifolds , 1988 .
[24] G. Lebeau,et al. Contróle Exact De Léquation De La Chaleur , 1995 .