Distribution mod $p$ of Euler's totient and the sum of proper divisors

Abstract. We consider the distribution in residue classes modulo primes p of Euler’s totient function φ(n) and the sum-of-proper-divisors function s(n) := σ(n)−n. We prove that the values φ(n), for n ≤ x, that are coprime to p are asymptotically uniformly distributed among the p−1 coprime residue classes modulo p, uniformly for 5 ≤ p ≤ (log x) (with A fixed but arbitrary). We also show that the values of s(n), for n composite, are uniformly distributed among all p residue classes modulo every p ≤ (log x). These appear to be the first results of their kind where the modulus is allowed to grow substantially with x.

[1]  C. Pomerance,et al.  Residue classes free of values of Euler's function , 2020, 2005.01078.

[2]  Carl Pomerance,et al.  POPULAR VALUES OF EULER'S FUNCTION , 1980 .

[3]  Paul Erdös,et al.  On the Normal Behavior of the Iterates Of some Arithmetic Functions , 1990 .

[4]  A. Harles Sieve Methods , 2001 .

[5]  C. Pomerance,et al.  Paul Erdős and the Rise of Statistical Thinking in Elementary Number Theory , 2013 .

[6]  G. Martin,et al.  The smallest invariant factor of the multiplicative group , 2019, International Journal of Number Theory.

[7]  I. Shparlinski,et al.  Least totient in a residue class , 2008 .

[8]  Carl Pomerance,et al.  On the distribution of amicable numbers. , 1977 .

[9]  Euler's Function in Residue Classes , 1998 .

[10]  Jessika Eichel,et al.  Introduction To Analytic And Probabilistic Number Theory , 2016 .

[11]  Daqing Wan,et al.  Generators and irreducible polynomials over finite fields , 1997, Math. Comput..

[12]  H. Davenport Multiplicative Number Theory , 1967 .

[13]  W. Banks,et al.  Distributional Properties of the Largest Prime Factor , 2005 .

[14]  Andreas Stein,et al.  High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams , 2004 .

[15]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[16]  F. Luca,et al.  Residue classes having tardy totients , 2007, 0709.3056.

[17]  Florian Luca,et al.  Values of the Euler Φ-function not divisible by a given odd prime, and the distribution of Euler-Kronecker constants for cyclotomic fields , 2013, Math. Comput..

[18]  ON THE DISTRIBUTION OF THE PARTIAL SUM OF EULER’S TOTIENT FUNCTION IN RESIDUE CLASSES , 2011 .

[19]  Paul Erdös,et al.  A conjecture in elementary number theory , 1944 .

[20]  Władysław Narkiewicz Uniform Distribution of Sequences of Integers in Residue Classes , 1984 .

[21]  Multiplicative character sums with the Euler function , 2009 .

[22]  On the number of restricted prime factors of an integer. I , 1976 .

[23]  E. Wirsing,et al.  Das asymptotische Verhalten von Summen über multiplikative Funktionen , 1961 .

[24]  Congruences and Rational Exponential Sums with the Euler Function , 2006 .

[25]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[26]  CONGRUENCES AND EXPONENTIAL SUMS WITH THE SUM OF ALIQUOT DIVISORS FUNCTION , 2008 .

[27]  W. Banks,et al.  Congruences and Exponential Sums with the Euler Function , 2004 .

[28]  P. Pollack Some arithmetic properties of the sum of proper divisors and the sum of prime divisors , 2014 .

[29]  P. Erdös,et al.  On a problem of Oppenheim concerning “factorisatio numerorum” , 1983 .

[30]  M. Garaev A NOTE ON THE LEAST TOTIENT OF A RESIDUE CLASS , 2007, 0711.2240.