Pure vorticity formulation and Galerkin discretization for the Brinkman equations

[1]  Wolfgang L. Wendland,et al.  Dirichlet problem for a nonlinear generalized Darcy–Forchheimer–Brinkman system in Lipschitz domains , 2015 .

[2]  Stéphanie Salmon,et al.  Low-order finite element method for the well-posed bidimensional Stokes problem , 2015 .

[3]  Ricardo Ruiz-Baier,et al.  Mixed Methods for a Stream-Function – Vorticity Formulation of the Axisymmetric Brinkman Equations , 2017, J. Sci. Comput..

[4]  K. Karlsen,et al.  A convergent mixed method for the Stokes approximation of viscous compressible flow , 2009, 0911.1870.

[5]  Alberto Valli,et al.  An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations , 1999, Math. Comput..

[6]  Philippe Poncet,et al.  Analysis of an immersed boundary method for three-dimensional flows in vorticity formulation , 2009, J. Comput. Phys..

[7]  Salim Meddahi,et al.  A finite element analysis of a pseudostress formulation for the Stokes eigenvalue problem , 2015 .

[8]  Panayot S. Vassilevski,et al.  A Mixed Formulation for the Brinkman Problem , 2014, SIAM J. Numer. Anal..

[9]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[10]  A. Riaz,et al.  Three-dimensional miscible displacement simulations in homogeneous porous media with gravity override , 2003, Journal of Fluid Mechanics.

[11]  Douglas N. Arnold,et al.  Mixed finite element approximation of the vector Laplacian with Dirichlet boundary conditions , 2011, 1109.3668.

[12]  Philippe G. Ciarlet,et al.  A NEW DUALITY APPROACH TO ELASTICITY , 2012 .

[13]  Salim Meddahi,et al.  Analysis of the Coupling of Primal and Dual-Mixed Finite Element Methods for a Two-Dimensional Fluid-Solid Interaction Problem , 2007, SIAM J. Numer. Anal..

[14]  Daniela Capatina,et al.  Stabilized finite element method for Navier-Stokes equations with physical boundary conditions , 2007, Math. Comput..

[15]  Ricardo Ruiz-Baier,et al.  An augmented velocity–vorticity–pressure formulation for the Brinkman equations , 2015 .

[16]  Jean-Luc Guermond,et al.  Vorticity-Velocity Formulations of the Stokes Problem in 3D , 1999 .

[17]  E Weinan,et al.  Simple finite element method in vorticity formulation for incompressible flows , 2001, Math. Comput..

[18]  M. Alvarez,et al.  A vorticity-based fully-mixed formulation for the 3D Brinkman–Darcy problem , 2016 .

[19]  Gabriel N. Gatica,et al.  Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow , 2013, Numerische Mathematik.

[20]  Ricardo Ruiz-Baier,et al.  A priori and a posteriori error analysis of a mixed scheme for the Brinkman problem , 2016, Numerische Mathematik.

[21]  Christine Bernardi,et al.  Spectral Discretization of the Vorticity, Velocity, and Pressure Formulation of the Stokes Problem , 2006, SIAM J. Numer. Anal..

[22]  Christine Bernardi,et al.  Spectral element discretization of the vorticity, velocity and pressure formulation of the Navier–Stokes problem , 2007 .

[23]  Guzmán Johnny,et al.  A family of nonconforming elements for the Brinkman problem , 2012 .

[24]  Xue-Cheng Tai,et al.  A Robust Finite Element Method for Darcy-Stokes Flow , 2002, SIAM J. Numer. Anal..

[25]  Ricardo Ruiz-Baier,et al.  Stabilized mixed approximation of axisymmetric Brinkman flows , 2015 .

[26]  Wolfgang L. Wendland,et al.  Boundary Value Problems of Robin Type for the Brinkman and Darcy–Forchheimer–Brinkman Systems in Lipschitz Domains , 2014 .

[27]  Christine Bernardi,et al.  Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem , 2006, Numerische Mathematik.

[28]  B. Mercier,et al.  Résolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en $r, z$ et séries de Fourier en $\theta $ , 1982 .

[29]  Bernardo Cockburn,et al.  An analysis of HDG methods for the vorticity-velocity-pressure formulation of the Stokes problem in three dimensions , 2012, Math. Comput..