Pure vorticity formulation and Galerkin discretization for the Brinkman equations
暂无分享,去创建一个
[1] Wolfgang L. Wendland,et al. Dirichlet problem for a nonlinear generalized Darcy–Forchheimer–Brinkman system in Lipschitz domains , 2015 .
[2] Stéphanie Salmon,et al. Low-order finite element method for the well-posed bidimensional Stokes problem , 2015 .
[3] Ricardo Ruiz-Baier,et al. Mixed Methods for a Stream-Function – Vorticity Formulation of the Axisymmetric Brinkman Equations , 2017, J. Sci. Comput..
[4] K. Karlsen,et al. A convergent mixed method for the Stokes approximation of viscous compressible flow , 2009, 0911.1870.
[5] Alberto Valli,et al. An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations , 1999, Math. Comput..
[6] Philippe Poncet,et al. Analysis of an immersed boundary method for three-dimensional flows in vorticity formulation , 2009, J. Comput. Phys..
[7] Salim Meddahi,et al. A finite element analysis of a pseudostress formulation for the Stokes eigenvalue problem , 2015 .
[8] Panayot S. Vassilevski,et al. A Mixed Formulation for the Brinkman Problem , 2014, SIAM J. Numer. Anal..
[9] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[10] A. Riaz,et al. Three-dimensional miscible displacement simulations in homogeneous porous media with gravity override , 2003, Journal of Fluid Mechanics.
[11] Douglas N. Arnold,et al. Mixed finite element approximation of the vector Laplacian with Dirichlet boundary conditions , 2011, 1109.3668.
[12] Philippe G. Ciarlet,et al. A NEW DUALITY APPROACH TO ELASTICITY , 2012 .
[13] Salim Meddahi,et al. Analysis of the Coupling of Primal and Dual-Mixed Finite Element Methods for a Two-Dimensional Fluid-Solid Interaction Problem , 2007, SIAM J. Numer. Anal..
[14] Daniela Capatina,et al. Stabilized finite element method for Navier-Stokes equations with physical boundary conditions , 2007, Math. Comput..
[15] Ricardo Ruiz-Baier,et al. An augmented velocity–vorticity–pressure formulation for the Brinkman equations , 2015 .
[16] Jean-Luc Guermond,et al. Vorticity-Velocity Formulations of the Stokes Problem in 3D , 1999 .
[17] E Weinan,et al. Simple finite element method in vorticity formulation for incompressible flows , 2001, Math. Comput..
[18] M. Alvarez,et al. A vorticity-based fully-mixed formulation for the 3D Brinkman–Darcy problem , 2016 .
[19] Gabriel N. Gatica,et al. Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow , 2013, Numerische Mathematik.
[20] Ricardo Ruiz-Baier,et al. A priori and a posteriori error analysis of a mixed scheme for the Brinkman problem , 2016, Numerische Mathematik.
[21] Christine Bernardi,et al. Spectral Discretization of the Vorticity, Velocity, and Pressure Formulation of the Stokes Problem , 2006, SIAM J. Numer. Anal..
[22] Christine Bernardi,et al. Spectral element discretization of the vorticity, velocity and pressure formulation of the Navier–Stokes problem , 2007 .
[23] Guzmán Johnny,et al. A family of nonconforming elements for the Brinkman problem , 2012 .
[24] Xue-Cheng Tai,et al. A Robust Finite Element Method for Darcy-Stokes Flow , 2002, SIAM J. Numer. Anal..
[25] Ricardo Ruiz-Baier,et al. Stabilized mixed approximation of axisymmetric Brinkman flows , 2015 .
[26] Wolfgang L. Wendland,et al. Boundary Value Problems of Robin Type for the Brinkman and Darcy–Forchheimer–Brinkman Systems in Lipschitz Domains , 2014 .
[27] Christine Bernardi,et al. Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem , 2006, Numerische Mathematik.
[28] B. Mercier,et al. Résolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en $r, z$ et séries de Fourier en $\theta $ , 1982 .
[29] Bernardo Cockburn,et al. An analysis of HDG methods for the vorticity-velocity-pressure formulation of the Stokes problem in three dimensions , 2012, Math. Comput..