BRAHMA: Population specific T1, T2, and FLAIR weighted brain templates and their impact in structural and functional imaging studies.

Differences in brain morphology across population groups necessitate creation of population-specific Magnetic Resonance Imaging (MRI) brain templates for interpretation of neuroimaging data. Variations in the neuroanatomy in a genetically heterogeneous population make the development of a population-specific brain template for the Indian subcontinent imperative. A dataset of high-resolution 3D T1, T2, and FLAIR images acquired from a group of 113 volunteers (M/F - 56/57, mean age 28.96 ± 7.80 years) are used to construct T1, T2, and FLAIR templates, collectively referred to as Indian Brain Template, "BRAHMA". A processing pipeline is developed and implemented in a MATLAB based toolbox for template construction and generation of tissue probability maps and segmentation atlases, with additional labels for deep brain regions such as the Substantia Nigra generated from the T2 and FLAIR templates. The use of BRAHMA template for analysis of structural and functional neuroimaging data from Indian participants provides improved accuracy with statistically significant results over that obtained using the ICBM-152 (International Consortium for Brain Mapping) template. Our results indicate that segmentations generated on structural images are closer in volume to those obtained from registration to the BRAHMA template than to the ICBM-152. Furthermore, functional MRI data obtained for Working Memory and Finger Tapping paradigms processed using the BRAHMA template shows a significantly higher percentage of the activation area than ICBM-152 in relevant brain regions, i.e. the left middle frontal gyrus, and the left and right precentral gyri, respectively. The availability of different image contrasts, tissue maps, and segmentation atlases makes the BRAHMA template a comprehensive tool for multi-modal image analysis in laboratory and clinical settings.

[1]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[2]  Scott Holland,et al.  Template-O-Matic: A toolbox for creating customized pediatric templates , 2008, NeuroImage.

[3]  Edmund T. Rolls,et al.  Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas , 2015, NeuroImage.

[4]  John E. Richards,et al.  A database of age-appropriate average MRI templates , 2016, NeuroImage.

[5]  Kuncheng Li,et al.  Construction of brain atlases based on a multi-center MRI dataset of 2020 Chinese adults , 2015, Scientific Reports.

[6]  et al.,et al.  The Effect of Template Choice on Morphometric Analysis of Pediatric Brain Data ☆ , 2022 .

[7]  P. Fitzgerald,et al.  Optimal transcranial magnetic stimulation coil placement for targeting the dorsolateral prefrontal cortex using novel magnetic resonance image‐guided neuronavigation , 2010, Human brain mapping.

[8]  Peter Gemmar,et al.  Post-operative deep brain stimulation assessment: Automatic data integration and report generation , 2018, Brain Stimulation.

[9]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[10]  Yi Wang,et al.  Quantitative susceptibility mapping to evaluate the early stage of Alzheimer's disease☆ , 2017, NeuroImage: Clinical.

[11]  Matthew J. McAuliffe,et al.  Medical Image Processing, Analysis and Visualization in clinical research , 2001, Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS 2001.

[12]  Nikos Makris,et al.  Automatically parcellating the human cerebral cortex. , 2004, Cerebral cortex.

[13]  Scott Holland,et al.  Infant brain probability templates for MRI segmentation and normalization , 2008, NeuroImage.

[14]  J. S. Lee,et al.  Development of Korean Standard Brain Templates , 2005, Journal of Korean medical science.

[15]  Arthur W. Toga,et al.  The myth of the normal, average human brain—The ICBM experience: (1) Subject screening and eligibility , 2009, NeuroImage.

[16]  Ankita Sharma,et al.  BHARAT: An Integrated Big Data Analytic Model for Early Diagnostic Biomarker of Alzheimer's Disease , 2019, Front. Neurol..

[17]  Pravat K. Mandal,et al.  BOLDSync: A MATLAB-based toolbox for synchronized stimulus presentation in functional MRI , 2014, Journal of Neuroscience Methods.

[18]  D. Louis Collins,et al.  Unbiased average age-appropriate atlases for pediatric studies , 2011, NeuroImage.

[19]  Paul A. Yushkevich,et al.  Multi-Atlas Segmentation with Joint Label Fusion , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Abraham Z. Snyder,et al.  A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume , 2004, NeuroImage.

[21]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[22]  Krzysztof J. Gorgolewski,et al.  MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites , 2016, bioRxiv.

[23]  M Wilke,et al.  Normative pediatric brain data for spatial normalization and segmentation differs from standard adult data , 2003, Magnetic resonance in medicine.

[24]  Phaneendra K. Yalavarthy,et al.  Population differences in brain morphology: Need for population specific brain template , 2017, Psychiatry Research: Neuroimaging.

[25]  H. Engeland,et al.  Variability in spatial normalization of pediatric and adult brain images , 2005, Clinical Neurophysiology.

[26]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[27]  Yihong Yang,et al.  Transcranial brain atlas , 2018, Science Advances.

[28]  John E. Richards,et al.  Age-specific MRI brain and head templates for healthy adults from 20 through 89 years of age , 2015, Front. Aging Neurosci..

[29]  Brian B. Avants,et al.  The optimal template effect in hippocampus studies of diseased populations , 2010, NeuroImage.

[30]  Konstantinos Arfanakis,et al.  Evaluation of standardized and study-specific diffusion tensor imaging templates of the adult human brain: Template characteristics, spatial normalization accuracy, and detection of small inter-group FA differences , 2018, NeuroImage.

[31]  J. Gee,et al.  The Insight ToolKit image registration framework , 2014, Front. Neuroinform..

[32]  T. Paus,et al.  Transcranial magnetic stimulation and the challenge of coil placement: A comparison of conventional and stereotaxic neuronavigational strategies , 2008, Human brain mapping.

[33]  Karl J. Friston,et al.  A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains , 2001, NeuroImage.

[34]  Brian B. Avants,et al.  An Open Source Multivariate Framework for n-Tissue Segmentation with Evaluation on Public Data , 2011, Neuroinformatics.

[35]  Susumu Mori,et al.  Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: Application to determine iron content in deep gray matter structures , 2013, NeuroImage.

[36]  Paul A. Yushkevich,et al.  Multi-atlas segmentation with joint label fusion and corrective learning—an open source implementation , 2013, Front. Neuroinform..

[37]  John Ashburner,et al.  SPM: A history , 2012, NeuroImage.

[38]  Warren D. Taylor,et al.  Variability in Frontotemporal Brain Structure: The Importance of Recruitment of African Americans in Neuroscience Research , 2010, PloS one.

[39]  Pierrick Coupé,et al.  Author manuscript, published in "Journal of Magnetic Resonance Imaging 2010;31(1):192-203" DOI: 10.1002/jmri.22003 Adaptive Non-Local Means Denoising of MR Images with Spatially Varying Noise Levels , 2010 .

[40]  Carmen E Sanchez,et al.  Age-Specific MRI Templates for Pediatric Neuroimaging , 2012, Developmental neuropsychology.

[41]  Ankita Sharma,et al.  A Comprehensive Review of Magnetoencephalography (MEG) Studies for Brain Functionality in Healthy Aging and Alzheimer's Disease (AD) , 2018, Front. Comput. Neurosci..

[42]  Chen Nan,et al.  Probabilistic MRI Brain Anatomical Atlases Based on 1,000 Chinese Subjects , 2013, PLoS ONE.

[43]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[44]  Chunlei Liu,et al.  Longitudinal atlas for normative human brain development and aging over the lifespan using quantitative susceptibility mapping , 2018, NeuroImage.

[45]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[46]  Terry M Peters,et al.  Ultra-High Field Template-Assisted Target Selection for Deep Brain Stimulation Surgery. , 2017, World neurosurgery.

[47]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[48]  Ivo D Dinov,et al.  Structural brain atlases: design, rationale, and applications in normal and pathological cohorts. , 2012, Journal of Alzheimer's disease : JAD.

[49]  Paul M. Thompson,et al.  Robust Brain Extraction Across Datasets and Comparison With Publicly Available Methods , 2011, IEEE Transactions on Medical Imaging.

[50]  P. A. Armitage,et al.  Development and initial testing of normal reference MR images for the brain at ages 65–70 and 75–80 years , 2008, European Radiology.

[51]  D. Louis Collins,et al.  Application of Information Technology: A Four-Dimensional Probabilistic Atlas of the Human Brain , 2001, J. Am. Medical Informatics Assoc..

[52]  Anders M. Dale,et al.  Sequence-independent segmentation of magnetic resonance images , 2004, NeuroImage.

[53]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[54]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[55]  Gady Agam,et al.  Development of a human brain diffusion tensor template , 2009, NeuroImage.

[56]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[57]  D. Louis Collins,et al.  Brain templates and atlases , 2012, NeuroImage.

[58]  Lin Shi,et al.  Using Large-Scale Statistical Chinese Brain Template (Chinese2020) in Popular Neuroimage Analysis Toolkits , 2017, Front. Hum. Neurosci..

[59]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[60]  Konstantinos Arfanakis,et al.  Enhanced ICBM diffusion tensor template of the human brain , 2011, NeuroImage.

[61]  Babak A. Ardekani,et al.  Model-based automatic detection of the anterior and posterior commissures on MRI scans , 2009, NeuroImage.

[62]  Terry M. Peters,et al.  3D statistical neuroanatomical models from 305 MRI volumes , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[63]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[64]  Anna Varentsova,et al.  Development of a high angular resolution diffusion imaging human brain template , 2014, NeuroImage.

[65]  Meritxell Bach Cuadra,et al.  A review of atlas-based segmentation for magnetic resonance brain images , 2011, Comput. Methods Programs Biomed..

[66]  Daisuke Tanaka,et al.  A study of the standard brain in Japanese children: Morphological comparison with the MNI template , 2013, Brain and Development.

[67]  Arthur W. Toga,et al.  The construction of a Chinese MRI brain atlas: A morphometric comparison study between Chinese and Caucasian cohorts , 2010, NeuroImage.

[68]  Pierre Jannin,et al.  Construction and assessment of a 3-T MRI brain template , 2010, NeuroImage.

[69]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[70]  O. Muzik,et al.  Statistical Parametric Mapping: Assessment of Application in Children , 2000, NeuroImage.

[71]  Joanna M. Wardlaw,et al.  Whole Brain Magnetic Resonance Image Atlases: A Systematic Review of Existing Atlases and Caveats for Use in Population Imaging , 2017, Front. Neuroinform..

[72]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.