Mid-infrared Suspended Membrane Waveguide and Ring Resonator on Silicon-on-Insulator

Theoretical and experimental studies of mid-infrared (mid-IR) suspended membrane waveguide (SMW) and suspended membrane ring (SMR) resonator are presented. An array of periodical holes beside the rib waveguide facilitates the local removal of buried oxide to form suspended membrane devices on silicon-on-insulator (SOI). The waveguide design is optimized in terms of hole size, etch depth, and bend radius to minimize device strain and optical loss. We calculate waveguide dimension to attain the wide low-dispersion (<formula formulatype="inline"><tex Notation="TeX">$\pm$</tex> </formula>100 ps/nm/km) bandwidth for the wavelength range from 2.0 to 8.0 <formula formulatype="inline"><tex Notation="TeX">$\mu \hbox{m}$</tex></formula>, and optical nonlinearity is also studied. The SMWs are fabricated on a commercial SOI wafer and characterized by an <formula formulatype="inline"><tex Notation="TeX">$\hbox{Er}^{3+} - \hbox{Pr}^{3+}$</tex></formula> codoped fiber laser at 2.75 <formula formulatype="inline"><tex Notation="TeX">$\mu\hbox{m}$</tex></formula>. Negligible bending losses are measured for a 40-<formula formulatype="inline"><tex Notation="TeX">$\mu\hbox{m}$</tex></formula> radius bend. The minimum waveguide loss of 3.0 <formula formulatype="inline"><tex Notation="TeX">$\pm$</tex></formula> 0.7 dB/cm is measured experimentally. The SMR resonator has a quality factor (<formula formulatype="inline"><tex Notation="TeX">$Q$</tex></formula>) of <formula formulatype="inline"><tex Notation="TeX">$\sim$</tex></formula>10 000 and an extinction ratio of <formula formulatype="inline"><tex Notation="TeX">$\sim$</tex></formula>13 dB in near-IR. In mid-IR, the resonator has a <formula formulatype="inline"><tex Notation="TeX">$Q$</tex></formula> of <formula formulatype="inline"><tex Notation="TeX">$\sim$</tex></formula> 8100.

[1]  Lech Wosinski,et al.  Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits. , 2010, Optics letters.

[2]  Graham T. Reed,et al.  Freestanding waveguides in silicon , 2007 .

[3]  G. Agrawal,et al.  Nonlinear optical phenomena in silicon waveguides: modeling and applications. , 2007, Optics express.

[4]  Cladding-modulated bragg gratings in silicon waveguides , 2009 .

[5]  Ke Xu,et al.  Characterization of Mid-Infrared Silicon-on-Sapphire Microring Resonators With Thermal Tuning , 2012, IEEE Photonics Journal.

[6]  D. Moss,et al.  Low propagation loss silicon-on-sapphire waveguides for the mid-infrared. , 2011, Optics express.

[7]  M. Lipson,et al.  Low loss etchless silicon photonic waveguides , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[8]  Y. Fainman,et al.  Kerr nonlinearity in silicon beyond 2.35μm , 2011, 2011 IEEE Photonics Society Summer Topical Meeting Series.

[9]  Milos Nedeljkovic,et al.  Low loss silicon waveguides for the mid-infrared. , 2011, Optics express.

[10]  Ke Xu,et al.  Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide. , 2012, Optics letters.

[11]  R. Baets,et al.  Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides. , 2011, Optics express.

[12]  Sanja Zlatanovic,et al.  Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source , 2010 .

[13]  Michal Lipson,et al.  Low loss etchless silicon photonic waveguides , 2009 .

[14]  Siegfried Janz,et al.  Group-index birefringence and loss measurements in silicon-on-insulator photonic wire waveguides , 2007 .

[15]  Philippe M. Fauchet,et al.  Dispersion of silicon nonlinearities in the near infrared region , 2007 .

[16]  Tanya M Monro,et al.  A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity. , 2009, Optics express.

[17]  Yurii A. Vlasov,et al.  Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides , 2010, 1001.1533.

[18]  Ke Xu,et al.  Mid-Infrared Grating Couplers for Silicon-on-Sapphire Waveguides , 2012, IEEE Photonics Journal.

[19]  Richard A. Soref,et al.  Silicon waveguided components for the long-wave infrared regionThis article was submitted to the spe , 2006 .

[20]  A. E. Willner,et al.  Silicon-on-Nitride Waveguide With Ultralow Dispersion Over an Octave-Spanning Mid-Infrared Wavelength Range , 2012, IEEE Photonics Journal.

[21]  M. Bartek,et al.  Bending and stretching studies on ultra-thin silicon substrates , 2005, 2005 6th International Conference on Electronic Packaging Technology.

[22]  Yang Liu,et al.  Silicon waveguides and ring resonators at 5.5 µm , 2010 .

[23]  Irfan Bulu,et al.  Mid-infrared photonic crystal cavities in silicon. , 2011, Optics express.

[24]  Bahram Jalali,et al.  Nonlinear absorption in silicon and the prospects of mid‐infrared silicon Raman lasers , 2006 .