High-dimensional data clustering
暂无分享,去创建一个
[1] Heng Tao Shen,et al. Principal Component Analysis , 2009, Encyclopedia of Biometrics.
[2] Cordelia Schmid,et al. Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).
[3] Maurizio Vichi,et al. A mixture model for the classification of three-way proximity data , 2006, Comput. Stat. Data Anal..
[4] A. Raftery,et al. Variable Selection for Model-Based Clustering , 2006 .
[5] Christopher K. I. Williams,et al. The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.
[6] C. Schmid,et al. Object Class Recognition Using Discriminative Local Features , 2005 .
[7] François Poulet,et al. OMEGA: Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité , 2004 .
[8] Huan Liu,et al. Subspace clustering for high dimensional data: a review , 2004, SKDD.
[9] T. Pavlenko. On feature selection, curse-of-dimensionality and error probability in discriminant analysis , 2003 .
[10] Geoffrey J. McLachlan,et al. Modelling high-dimensional data by mixtures of factor analyzers , 2003, Comput. Stat. Data Anal..
[11] I. Jolliffe. Principal Component Analysis , 2002 .
[12] Adrian E. Raftery,et al. Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .
[13] T. Pavlenko,et al. Effect of dimensionality on discrimination , 2001 .
[14] S T Roweis,et al. Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.
[15] J. Tenenbaum,et al. A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.
[16] G. McLachlan,et al. Finite Mixture Models , 2000, Wiley Series in Probability and Statistics.
[17] Stáephane Girard,et al. A nonlinear PCA based on manifold approximation , 2000, Comput. Stat..
[18] Anil K. Jain,et al. Data clustering: a review , 1999, CSUR.
[19] Christopher M. Bishop,et al. Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.
[20] Bernhard Schölkopf,et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.
[21] Dimitrios Gunopulos,et al. Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.
[22] Benzion Boukai,et al. The Discrimination Subspace Model , 1997 .
[23] G. McLachlan,et al. The EM algorithm and extensions , 1996 .
[24] H. Bock. Probabilistic models in cluster analysis , 1996 .
[25] Gérard Govaert,et al. Gaussian parsimonious clustering models , 1995, Pattern Recognit..
[26] T. Kohonen. Self-Organizing Maps , 1995, Springer Series in Information Sciences.
[27] W. V. McCarthy,et al. Discriminant Analysis with Singular Covariance Matrices: Methods and Applications to Spectroscopic Data , 1995 .
[28] A. Raftery,et al. Model-based Gaussian and non-Gaussian clustering , 1993 .
[29] James R. Schott. Dimensionality reduction in quadratic discriminant analysis , 1993 .
[30] G. Celeux,et al. A Classification EM algorithm for clustering and two stochastic versions , 1992 .
[31] W. DeSarbo,et al. A maximum likelihood methodology for clusterwise linear regression , 1988 .
[32] Arjun K. Gupta,et al. Multivariate Statistical Modeling and Data Analysis. , 1988 .
[33] B. Flury. Common Principal Components in k Groups , 1984 .
[34] J. Bezdek,et al. Detection and Characterization of Cluster Substructure II. Fuzzy c-Varieties and Convex Combinations Thereof , 1981 .
[35] J. Bezdek,et al. DETECTION AND CHARACTERIZATION OF CLUSTER SUBSTRUCTURE I. LINEAR STRUCTURE: FUZZY c-LINES* , 1981 .
[36] J. B. Ramsey,et al. Estimating Mixtures of Normal Distributions and Switching Regressions , 1978 .
[37] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[38] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[39] R. Cattell. The Scree Test For The Number Of Factors. , 1966, Multivariate behavioral research.
[40] S. Lazebnik,et al. Local Features and Kernels for Classification of Texture and Object Categories: An In-Depth Study , 2005 .
[41] Isabelle Guyon,et al. An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..
[42] Chao Yang,et al. ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.
[43] Jeanny Hérault,et al. Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets , 1997, IEEE Trans. Neural Networks.
[44] J. Carroll,et al. K-means clustering in a low-dimensional Euclidean space , 1994 .
[45] M. Schader,et al. New Approaches in Classification and Data Analysis , 1994 .
[46] Hans-Hermann Bock,et al. On the Interface between Cluster Analysis, Principal Component Analysis, and Multidimensional Scaling , 1987 .
[47] W. Gautschi,et al. An algorithm for simultaneous orthogonal transformation of several positive definite symmetric matrices to nearly diagonal form , 1986 .
[48] E. Diday,et al. Introduction à l'analyse factorielle typologique , 1974 .