Nanoporous Graphene Membranes for Efficient 3He/4He Separation

Nanoporous functionalized graphene membranes containing nitrogen atoms in a nanosized ring pore have the capability to separate 3He from 4He efficiently by quantum tunneling through the pore. Calculations on size-reduced model systems of single-graphene pores reveal that a balanced choice of tunneling barrier height and low gas temperature boosts the selectivity and keeps the helium gas flux at an industrially exploitable level.

[1]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[2]  S. Dai,et al.  Porous graphene as the ultimate membrane for gas separation. , 2009, Nano letters.

[3]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[4]  Narayana R Aluru,et al.  Water Transport through Ultrathin Graphene , 2010 .

[5]  C. N. R. Rao,et al.  Synthesis, Structure, and Properties of Boron‐ and Nitrogen‐Doped Graphene , 2009, 0902.3077.

[6]  L. Hedlund,et al.  MR Imaging with Hyperpolarized 3He Gas , 1995, Magnetic resonance in medicine.

[7]  R. Ruoff,et al.  Chemical methods for the production of graphenes. , 2009, Nature nanotechnology.

[8]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[9]  Helium läßt die Lunge „leuchten”︁ , 1997 .

[10]  Lei Fu,et al.  Synthesis of Nitrogen‐Doped Graphene Using Embedded Carbon and Nitrogen Sources , 2011, Advanced materials.

[11]  F. M. Peeters,et al.  Graphene: A perfect nanoballoon , 2008, 0810.4056.

[12]  P. Avouris,et al.  Carbon-based electronics. , 2007, Nature nanotechnology.

[13]  Boyang Wang,et al.  Selective ion passage through functionalized graphene nanopores. , 2008, Journal of the American Chemical Society.

[14]  Joshua Schrier,et al.  Helium Separation Using Porous Graphene Membranes , 2010 .

[15]  A. M. van der Zande,et al.  Impermeable atomic membranes from graphene sheets. , 2008, Nano letters.

[16]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[17]  A. Reina,et al.  Graphene as a sub-nanometer trans-electrode membrane , 2010, Nature.

[18]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[19]  W. Happer,et al.  Biological magnetic resonance imaging using laser-polarized 129Xe , 1994, Nature.

[20]  G. Kulcinski,et al.  Lunar Source of 3He for Commercial Fusion Power , 1986 .

[21]  H. Dai,et al.  N-Doping of Graphene Through Electrothermal Reactions with Ammonia , 2009, Science.

[22]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[23]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[24]  Ya-Qiu Jin,et al.  Quantitative estimation of helium-3 spatial distribution in the lunar regolith layer , 2007 .

[25]  A. Cho Physics. Helium-3 shortage could put freeze on low-temperature research. , 2009, Science.

[26]  Gui Yu,et al.  Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. , 2009, Nano letters.

[27]  Markus Antonietti,et al.  From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks. , 2008, Journal of the American Chemical Society.

[28]  C. Beenakker Andreev reflection and Klein tunneling in graphene , 2007, 0710.3848.

[29]  Marija Drndic,et al.  Electron beam nanosculpting of suspended graphene sheets , 2008 .