Asymptotic evaluation of bosonic probability amplitudes in linear unitary networks in the case of large number of bosons

An asymptotic analytical approach is proposed for bosonic probability amplitudes in unitary linear networks, such as the optical multiport devices for photons. The asymptotic approach applies for large number of bosons $N\gg M$ in the $M$-mode network, where $M$ is finite. The probability amplitudes of $N$ bosons unitarily transformed from the input modes to the output modes of a unitary network are expressed through a multidimensional integral with the integrand containing a large parameter (N) in the exponent. The integral representation allows an asymptotic estimate of bosonic probability amplitudes up to a multiplicative error of order 1/N by the saddle point method. The estimate depends on solution of the scaling problem for the $M\times M$-dimensional unitary network matrix: to find the left and right diagonal matrices which scale the unitary matrix to a matrix which has specified row and column sums (equal, respectively, to the distributions of bosons in the input and output modes). The scaled matrices give the saddle points of the integral. For simple saddle points, an explicit formula giving the asymptotic estimate of bosonic probability amplitudes is derived. Performance of the approximation and the scaling of the relative error with N are studied for two-mode network (the beam-splitter), where the saddle-points are roots of a quadratic and an exact analytical formula for the probability amplitudes is available, and for three-mode network (the tritter).

[1]  Scott Aaronson,et al.  A linear-optical proof that the permanent is #P-hard , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  Herbert J. Bernstein Must quantum theory assume unrestricted superposition , 1974 .

[3]  Alexander I. Barvinok Enumerating Contingency Tables via Random Permanents , 2008, Comb. Probab. Comput..

[4]  I. Good On the Application of Symmetric Dirichlet Distributions and their Mixtures to Contingency Tables , 1976 .

[5]  C. Ross Found , 1869, The Dental register.

[6]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[7]  I. Olkin,et al.  Scaling of matrices to achieve specified row and column sums , 1968 .

[8]  G. Rw Decision procedure for indefinite hypergeometric summation , 1978 .

[9]  Andrew G. White,et al.  Photonic Boson Sampling in a Tunable Circuit , 2012, Science.

[10]  Richard Sinkhorn A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .

[11]  Amplitudes for multiphoton quantum processes in linear optics , 2011 .

[12]  Markus Tiersch,et al.  Many-particle interference beyond many-boson and many-fermion statistics , 2012, 1204.5588.

[13]  Scott Aaronson,et al.  The Computational Complexity of Linear Optics , 2013, Theory Comput..

[14]  F. Yates,et al.  Statistical methods for research workers. 5th edition , 1935 .

[15]  F. Yates Contingency Tables Involving Small Numbers and the χ2 Test , 1934 .

[16]  R. Fisher Statistical methods for research workers , 1927, Protoplasma.

[17]  Lidror Troyansky,et al.  Permanent Uncertainty: on the Quantum Evaluation of the Determinant and the Permanent of a Matrix , 1996 .

[18]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[19]  Peter C Humphreys,et al.  Multiphoton quantum interference in a multiport integrated photonic device , 2012, Nature Communications.

[20]  Nicolò Spagnolo,et al.  Three-photon bosonic coalescence in an integrated tritter , 2012, Nature Communications.

[21]  B. M. Fulk MATH , 1992 .

[22]  B. J. Metcalf,et al.  Boson Sampling on a Photonic Chip , 2012, Science.

[23]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[24]  Yuan Liang Lim,et al.  Generalized Hong–Ou–Mandel experiments with bosons and fermions , 2005, quant-ph/0505034.

[25]  P. Diaconis,et al.  Testing for independence in a two-way table , 1985 .

[26]  Hajime Ezawa,et al.  Quantum Control and Measurement , 1993 .

[27]  Brendan D. McKay,et al.  Asymptotic enumeration of sparse nonnegative integer matrices with specified row and column sums , 2008, Adv. Appl. Math..

[28]  C. Mortici ON GOSPERS FORMULA FOR THE GAMMA FUNCTION , 2011 .

[29]  Teich,et al.  Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics. , 1989, Physical review. A, General physics.

[30]  Edward A. Bender,et al.  The asymptotic number of non-negative integer matrices with given row and column sums , 1974, Discret. Math..

[31]  Ronald L. Graham,et al.  On the permanent of Schur's matrix , 1976, Journal of the Australian Mathematical Society.

[32]  H. Ryser Combinatorial Mathematics: THE PRINCIPLE OF INCLUSION AND EXCLUSION , 1963 .

[33]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[34]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[35]  S. Berman,et al.  Nuovo Cimento , 1983 .

[36]  Andrzej Blikle,et al.  Mathematical Foundations of Computer Science , 1974, Lecture Notes in Computer Science.

[37]  Alexander Barvinok,et al.  Asymptotic estimates for the number of contingency tables, integer flows, and volumes of transportation polytopes , 2007, 0709.3810.

[38]  Markus Tiersch,et al.  Zero-transmission law for multiport beam splitters. , 2010, Physical review letters.

[39]  P. Diaconis,et al.  Rectangular Arrays with Fixed Margins , 1995 .

[40]  E. R. Caianiello,et al.  On quantum field theory — I: explicit solution of Dyson’s equation in electrodynamics without use of feynman graphs , 1953 .

[41]  Eduardo R. Caianiello,et al.  Combinatorics and renormalization in quantum field theory , 1973 .

[42]  A. Barvinok Brunn–Minkowski inequalities for contingency tables and integer flows , 2006, math/0603655.

[43]  F. Laloë,et al.  Quantum Properties of a Single Beam Splitter , 2010, 1004.1731.

[44]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.