A new Liapunov function for the simple chemostat

[1]  S Pavlou,et al.  Oscillations of two competing microbial populations in configurations of two interconnected chemostats. , 1998, Mathematical biosciences.

[2]  Huaxing Xia,et al.  Global Stability in Chemostat-Type Equations with Distributed Delays , 1998 .

[3]  M. Ballyk,et al.  A model of microbial growth in a plug flow reactor with wall attachment. , 1999, Mathematical biosciences.

[4]  Sergei S. Pilyugin,et al.  Persistence Criteria for a Chemostat with Variable Nutrient Input , 2001 .

[5]  Bingtuan Li,et al.  Global Asymptotic Behavior of the Chemostat: General Response Functions and Different Removal Rates , 1998, SIAM J. Appl. Math..

[6]  Gail S. K. Wolkowicz,et al.  Global Asymptotic Behavior of a Chemostat Model with Discrete Delays , 1997, SIAM J. Appl. Math..

[7]  Coexistence in the unstirred chemostat , 1998 .

[8]  M. Zhien,et al.  The threshold of population survival in a polluted chemostat model , 1998 .

[9]  Gail S. K. Wolkowicz,et al.  Competition in the Chemostat: A Distributed Delay Model and Its Global Asymptotic Behavior , 1997, SIAM J. Appl. Math..

[10]  Sergei S. Pilyugin,et al.  Competition in the Unstirred Chemostat with Periodic Input and Washout , 1999, SIAM J. Appl. Math..

[11]  B W Kooi,et al.  Food chain dynamics in the chemostat. , 1998, Mathematical biosciences.

[12]  Gail S. K. Wolkowicz,et al.  Global dynamics of a chemostat competition model with distributed delay , 1999 .

[13]  Xiao-Qiang Zhao,et al.  Dynamics of a Periodically Pulsed Bio-reactor Model , 1999 .

[14]  K. Hadeler,et al.  Model of plasmid-bearing, plasmid-free competition in the chemostat with nutrient recycling and an inhibitor. , 1998, Mathematical biosciences.

[15]  Hal L. Smith The periodically forced Droop model for phytoplankton growth in a chemostat , 1997 .

[16]  Shigui Ruan,et al.  Global Stability in Chemostat-Type Competition Models with Nutrient Recycling , 1998, SIAM J. Appl. Math..

[17]  Mary Ballyk,et al.  Effects of Random Motility on Microbial Growth and Competition in a Flow Reactor , 1998, SIAM J. Appl. Math..

[18]  Solomon Lefschetz,et al.  Stability by Liapunov's Direct Method With Applications , 1962 .

[19]  Xue-Zhong He,et al.  Global stability in chemostat-type plankton models with delayed nutrient recycling , 1998 .

[20]  Sze-Bi Hsu,et al.  Competition in the chemostat when one competitor produces a toxin , 1998 .

[21]  Sergei S. Pilyugin,et al.  The Simple Chemostat with Wall Growth , 1999, SIAM J. Appl. Math..

[22]  Yang Kuang,et al.  Simple Food Chain in a Chemostat with Distinct Removal Rates , 2000 .

[23]  Gail S. K. Wolkowicz,et al.  Bifurcation Analysis of a Chemostat Model with a Distributed Delay , 1996 .

[24]  Sze-Bi Hsu,et al.  Limiting Behavior for Competing Species , 1978 .

[25]  Hal L. Smith A discrete, size-structured model of microbial growth and competition in the chemostat , 1996 .

[26]  B Tang,et al.  Population dynamics and competition in chemostat models with adaptive nutrient uptake , 1997, Journal of mathematical biology.

[27]  S. Pavlou,et al.  On the coexistence of three microbial populations competing for two complementary substrates in configurations of interconnected chemostats. , 1998, Mathematical biosciences.

[28]  S. F. Ellermeyer,et al.  Competition in the Chemostat: Global Asymptotic Behavior of a Model with Delayed Response in Growth , 1994, SIAM J. Appl. Math..

[29]  Paul Waltman,et al.  The Theory of the Chemostat: Dynamics of Microbial Competition , 1995 .