In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice.

[1]  W. Cai,et al.  In vitro and In vivo Characterization of 64Cu-Labeled AbegrinTM, a Humanized Monoclonal Antibody against Integrin αvβ3 , 2006 .

[2]  Weibo Cai,et al.  A Thiol-Reactive 18F-Labeling Agent, N-[2-(4-18F-Fluorobenzamido)Ethyl]Maleimide, and Synthesis of RGD Peptide-Based Tracer for PET Imaging of αvβ3 Integrin Expression , 2006 .

[3]  M. Prato,et al.  Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. , 2006, Nano letters.

[4]  Weibo Cai,et al.  Near-Infrared Fluorescence Imaging of Tumor Integrin αvβ3 Expression with Cy7-Labeled RGD Multimers , 2006, Molecular Imaging and Biology.

[5]  Carolyn R Bertozzi,et al.  Interfacing carbon nanotubes with living cells. , 2006, Journal of the American Chemical Society.

[6]  Sanjiv S Gambhir,et al.  Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. , 2006, Nano letters.

[7]  M. Prato,et al.  Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[8]  W. E. Billups,et al.  Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. , 2006, Toxicology letters.

[9]  Zhuang Liu,et al.  Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. , 2006, Angewandte Chemie.

[10]  Thomas E. Eurell,et al.  Single‐Walled Carbon Nanotube Spectroscopy in Live Cells: Towards Long‐Term Labels and Optical Sensors , 2005 .

[11]  S. Gambhir,et al.  microPET Imaging of Glioma Integrin αvβ3 Expression Using 64Cu-Labeled Tetrameric RGD Peptide , 2005 .

[12]  Zhuang Liu,et al.  Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. , 2005, Journal of the American Chemical Society.

[13]  H. Dai,et al.  Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  K. Leong,et al.  Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. , 2005, Angewandte Chemie.

[15]  H. Dai,et al.  Carbon nanotubes as intracellular protein transporters: generality and biological functionality. , 2005, Journal of the American Chemical Society.

[16]  A. C. Hunter,et al.  Nanomedicine: current status and future prospects , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[17]  M. Prato,et al.  Biomedical applications of functionalised carbon nanotubes. , 2005, Chemical communications.

[18]  M. Prato,et al.  Translocation of bioactive peptides across cell membranes by carbon nanotubes. , 2004, Chemical communications.

[19]  S. Bachilo,et al.  Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. , 2004, Journal of the American Chemical Society.

[20]  Z. Gu,et al.  Biodistribution of carbon single-wall carbon nanotubes in mice. , 2004, Journal of nanoscience and nanotechnology.

[21]  Peter S. Conti,et al.  Pegylated Arg-Gly-Asp Peptide: 64Cu Labeling and PET Imaging of Brain Tumor αvβ3-Integrin Expression , 2004 .

[22]  H. Dai,et al.  Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells. , 2004, Journal of the American Chemical Society.

[23]  H. Jin,et al.  Integrins: roles in cancer development and as treatment targets , 2004, British Journal of Cancer.

[24]  Rakesh K. Jain,et al.  Vascular and interstitial barriers to delivery of therapeutic agents in tumors , 1990, Cancer and Metastasis Reviews.

[25]  M. Shim,et al.  Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Hongjie Dai,et al.  Carbon nanotubes: opportunities and challenges , 2002 .

[27]  Thilo Stehle,et al.  Crystal Structure of the Extracellular Segment of Integrin αVβ3 in Complex with an Arg-Gly-Asp Ligand , 2002, Science.

[28]  S M Moghimi,et al.  Long-circulating and target-specific nanoparticles: theory to practice. , 2001, Pharmacological reviews.

[29]  G. Mizejewski,et al.  Role of integrins in cancer: survey of expression patterns. , 1999, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[30]  M. Dresselhaus Carbon nanotubes , 1995 .

[31]  C. Meares,et al.  Conjugation of antibodies with bifunctional chelating agents: isothiocyanate and bromoacetamide reagents, methods of analysis, and subsequent addition of metal ions. , 1984, Analytical biochemistry.