Optimizing Planar and 2-Planar parsers with MaltOptimizer

alisis sint actico de dependencias, MaltOptimizer, MaltParser, Planar y 2-Planar Abstract: MaltOptimizer is a tool that is capable of nding an optimal congura- tion for MaltParser models, taking into account that nowadays dependency parsers require careful tuning in order to obtain state-of-the-art results, and this tuning is normally based on specialized knowledge. The Planar and 2-Planar parsers are two dierent parsing algorithms included in MaltParser. In the present paper, we show how these two parsers can be included in MaltOptimizer processes comparing them with the rest of MaltParser algorithm families, and how we can dene a deep feature search and selection by using MaltOptimizer for these two algorithms. The experiments show that by using MaltOptimizer we can improve parsing accuracy for Planar and 2-Planar parsers by up to 8 percent absolute (labeled attachment score) compared to default settings. Keywords: Dependency parsing, MaltOptimizer, MaltParser, Planar and 2-Planar

[1]  Sabine Buchholz,et al.  CoNLL-X Shared Task on Multilingual Dependency Parsing , 2006, CoNLL.

[2]  Céline Rouveirol,et al.  Machine Learning: ECML-98 , 1998, Lecture Notes in Computer Science.

[3]  Carlos Gómez-Rodríguez,et al.  Dependency Parsing with Undirected Graphs , 2012, EACL 2012.

[4]  Niels Ott,et al.  Evaluating Dependency Parsing Performance on German Learner Language , 2010 .

[5]  Joakim Nivre,et al.  An Improved Oracle for Dependency Parsing with Online Reordering , 2009, IWPT.

[6]  Anssi Yli-Jyrä,et al.  Multiplanarity - a model for dependency structures in treebanks , 2003 .

[7]  Joakim Nivre,et al.  Algorithms for Deterministic Incremental Dependency Parsing , 2008, CL.

[8]  Joakim Nivre,et al.  An Efficient Algorithm for Projective Dependency Parsing , 2003, IWPT.

[9]  Daniel Fernández González,et al.  Dependencias no dirigidas para el análisis basado en transiciones , 2012 .

[10]  Pierre Nugues,et al.  Automatic Discovery of Feature Sets for Dependency Parsing , 2010, COLING.

[11]  Walter Daelemans,et al.  Combined Optimization of Feature Selection and Algorithm Parameters in Machine Learning of Language , 2003, ECML.

[12]  Joakim Nivre,et al.  MaltOptimizer: An Optimization Tool for MaltParser , 2012, EACL.

[13]  Joakim Nivre,et al.  Labeled Pseudo-Projective Dependency Parsing with Support Vector Machines , 2006, CoNLL.

[14]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[15]  Joakim Nivre,et al.  A Transition-Based Parser for 2-Planar Dependency Structures , 2010, ACL.

[16]  Joakim Nivre,et al.  Pseudo-Projective Dependency Parsing , 2005, ACL.

[17]  Sebastian Riedel,et al.  The CoNLL 2007 Shared Task on Dependency Parsing , 2007, EMNLP.

[18]  Joakim Nivre,et al.  MaltOptimizer: A System for MaltParser Optimization , 2012, LREC.

[19]  Carlos Gómez-Rodríguez,et al.  Dependencias no dirigidas para el análisis basado en transiciones , 2012, Proces. del Leng. Natural.

[20]  Wolfgang Menzel,et al.  Incremental Parsing and the Evaluation of Partial Dependency Analyses , 2011 .

[21]  Walt Detmar Meurers,et al.  Comparing Rule-Based and Data-Driven Dependency Parsing of Learner Language , 2011, DepLing.

[22]  Walter Daelemans,et al.  Simultaneous feature selection and parameter optimization for memory-based natural language processing , 2000 .

[23]  Joakim Nivre,et al.  Non-Projective Dependency Parsing in Expected Linear Time , 2009, ACL.

[24]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[25]  Joakim Nivre,et al.  MaltParser: A Data-Driven Parser-Generator for Dependency Parsing , 2006, LREC.

[26]  Michael A. Covington,et al.  A Fundamental Algorithm for Dependency Parsing , 2004 .