Assembly and clustering of natural antibiotics guides target identification.

Antibiotics are essential for numerous medical procedures, including the treatment of bacterial infections, but their widespread use has led to the accumulation of resistance, prompting calls for the discovery of antibacterial agents with new targets. A majority of clinically approved antibacterial scaffolds are derived from microbial natural products, but these valuable molecules are not well annotated or organized, limiting the efficacy of modern informatic analyses. Here, we provide a comprehensive resource defining the targets, chemical origins and families of the natural antibacterial collective through a retrobiosynthetic algorithm. From this we also detail the directed mining of biosynthetic scaffolds and resistance determinants to reveal structures with a high likelihood of having previously unknown modes of action. Implementing this pipeline led to investigations of the telomycin family of natural products from Streptomyces canus, revealing that these bactericidal molecules possess a new antibacterial mode of action dependent on the bacterial phospholipid cardiolipin.

[1]  David J Newman,et al.  Natural products as sources of new drugs over the 30 years from 1981 to 2010. , 2012, Journal of natural products.

[2]  Kouji Matsumoto,et al.  Cardiolipin Domains in Bacillus subtilis Marburg Membranes , 2004, Journal of bacteriology.

[3]  I. V. Solov’eva,et al.  [Concentration of neothelomycin in the blood of rabbits following intramuscular and oral administration]. , 1966, Antibiotiki.

[4]  Carla S. Jones,et al.  Minimum Information about a Biosynthetic Gene cluster. , 2015, Nature chemical biology.

[5]  A. Schuffenhauer,et al.  Charting biologically relevant chemical space: a structural classification of natural products (SCONP). , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  O. Nishimura,et al.  Pyloricidins, novel anti-helicobacterpylori antibiotics produced by Bacillus sp. I. Taxonomy, fermentation and biological activity. , 2001, The Journal of antibiotics.

[7]  A. Saghatelian,et al.  Localization of Anionic Phospholipids in Escherichia coli Cells , 2014, Journal of bacteriology.

[8]  Sreejith Shankar,et al.  The generation of "unnatural" products: synthetic biology meets synthetic chemistry. , 2012, Natural product reports.

[9]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[10]  Victor M. Markowitz,et al.  IMG-ABC: A Knowledge Base To Fuel Discovery of Biosynthetic Gene Clusters and Novel Secondary Metabolites , 2015, mBio.

[11]  Stolpnik Vg,et al.  Concentration of neothelomycin in the blood of rabbits following intramuscular and oral administration , 1966 .

[12]  J. Vederas,et al.  [Drug discovery and natural products: end of era or an endless frontier?]. , 2011, Biomeditsinskaia khimiia.

[13]  R. Süssmuth,et al.  The gyrase inhibitor albicidin consists of p-aminobenzoic acids and cyanoalanine. , 2015, Nature chemical biology.

[14]  D. Pompliano,et al.  Drugs for bad bugs: confronting the challenges of antibacterial discovery , 2007, Nature Reviews Drug Discovery.

[15]  J. Bérdy Thoughts and facts about antibiotics: Where we are now and where we are heading , 2012, The Journal of Antibiotics.

[16]  Kerstin Pingel,et al.  50 Years of Image Analysis , 2012 .

[17]  Nicholas Waglechner,et al.  Identifying producers of antibacterial compounds by screening for antibiotic resistance , 2013, Nature Biotechnology.

[18]  W. Dowhan,et al.  Cardiolipin membrane domains in prokaryotes and eukaryotes. , 2009, Biochimica et biophysica acta.

[19]  C. Steinbeck,et al.  Recent developments of the chemistry development kit (CDK) - an open-source java library for chemo- and bioinformatics. , 2006, Current pharmaceutical design.

[20]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[21]  Kai Blin,et al.  antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters , 2015, Nucleic Acids Res..

[22]  J. Huftalen,et al.  Pharmacological studies with telomycin. , 1957, Antibiotics annual.

[23]  R. Süssmuth,et al.  Action of atrop-abyssomicin C as an inhibitor of 4-amino-4-deoxychorismate synthase PabB. , 2007, Angewandte Chemie.

[24]  I. Chopra,et al.  Mode of action of the cyclic depsipeptide antibiotic LL-AO341 beta 1 and partial characterization of a Staphylococcus aureus mutant resistant to the antibiotic. , 1993, The Journal of antimicrobial chemotherapy.

[25]  B. Guigliarelli,et al.  Cardiolipin binding in bacterial respiratory complexes: structural and functional implications. , 2012, Biochimica et biophysica acta.

[26]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[27]  Christopher T. Walsh,et al.  Antibiotics for Emerging Pathogens , 2009, Science.

[28]  Daniel N. Wilson Ribosome-targeting antibiotics and mechanisms of bacterial resistance , 2013, Nature Reviews Microbiology.

[29]  Margherita Sosio,et al.  Antibiotic discovery in the twenty-first century: current trends and future perspectives , 2010, The Journal of Antibiotics.

[30]  M. Bibikova,et al.  [Directed screening of aminoglycoside antibiotic producers on selective media with gentamycin]. , 1981, Antibiotiki.

[31]  C. Walsh,et al.  Prospects for new antibiotics: a molecule-centered perspective , 2013, The Journal of Antibiotics.

[32]  G. Machaidze,et al.  Specific binding of Ro 09-0198 (cinnamycin) to phosphatidylethanolamine: a thermodynamic analysis. , 2002, Biochemistry.

[33]  A. Gourevitch,et al.  Telomycin, a new antibiotic. , 1957, Antibiotics annual.

[34]  S. Nakamura,et al.  The structure of telomycin. , 1968, Journal of the American Chemical Society.

[35]  Michael A. Skinnider,et al.  Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM) , 2015, Nucleic acids research.

[36]  Ivanitskaia Lp,et al.  [Directed screening of aminoglycoside antibiotic producers on selective media with gentamycin]. , 1981, Antibiotiki.

[37]  R. Müller,et al.  Cystobactamids: myxobacterial topoisomerase inhibitors exhibiting potent antibacterial activity. , 2014, Angewandte Chemie.

[38]  Christus,et al.  A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins , 2022 .

[39]  T. Ohta,et al.  Staphylococcus aureus requires cardiolipin for survival under conditions of high salinity , 2011, BMC Microbiology.

[40]  K. Lewis,et al.  A new antibiotic kills pathogens without detectable resistance , 2015, Nature.

[41]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[42]  J. Bartlett,et al.  Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[43]  H. Kurihara,et al.  Lysocin E is a new antibiotic that targets menaquinone in the bacterial membrane. , 2015, Nature chemical biology.

[44]  D. Hughes,et al.  Sampling the Antibiotic Resistome , 2006, Science.

[45]  Y. Demirel Thermodynamic Analysis , 2013 .

[46]  Michael A Fischbach,et al.  One pathway, many products. , 2007, Nature chemical biology.

[47]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[48]  Neil L Kelleher,et al.  A Roadmap for Natural Product Discovery Based on Large-Scale Genomics and Metabolomics , 2014, Nature chemical biology.

[49]  Stefan Wetzel,et al.  Natural-product-derived fragments for fragment-based ligand discovery , 2012, Nature Chemistry.

[50]  Ivanitskaia Lp,et al.  Use of selective media with lincomycin for the directed screening of antibiotic producers , 1981 .

[51]  M. Bibikova,et al.  [Use of selective media with lincomycin for the directed screening of antibiotic producers]. , 1981, Antibiotiki.

[52]  A. So,et al.  Tackling antibiotic resistance , 2010, BMJ : British Medical Journal.

[53]  R. Ebright,et al.  New target for inhibition of bacterial RNA polymerase: 'switch region'. , 2011, Current opinion in microbiology.

[54]  A. Demain,et al.  Avoidance of suicide in antibiotic-producing microbes , 2010, Journal of Industrial Microbiology & Biotechnology.

[55]  Egon L. Willighagen,et al.  The Chemistry Development Kit (CDK): An Open-Source Java Library for Chemo-and Bioinformatics , 2003, J. Chem. Inf. Comput. Sci..

[56]  K. Marotti,et al.  The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with binding of chloramphenicol and lincomycin , 1997, Antimicrobial agents and chemotherapy.

[57]  Robert D. Finn,et al.  HMMER web server: interactive sequence similarity searching , 2011, Nucleic Acids Res..

[58]  A. Torikata,et al.  Mycoplanecins, novel antimycobacterial antibiotics from Actinoplanes awajinensis subsp. mycoplanecinus subsp. nov. II. Isolation, physico-chemical characterization and biological activities of mycoplanecin A. , 1983, The Journal of antibiotics.

[59]  Michele Magrane,et al.  UniProt Knowledgebase: a hub of integrated protein data , 2011, Database J. Biol. Databases Curation.

[60]  A. Gourevitch,et al.  Microbiological studies on telomycin. , 1957, Antibiotics annual.

[61]  D. Huson,et al.  Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. , 2012, Systematic biology.

[62]  L. Vining Roles of secondary metabolites from microbes. , 2007, Ciba Foundation symposium.

[63]  Molly K. Gibson,et al.  Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology , 2014, The ISME Journal.

[64]  R. Müller,et al.  Biosynthetic Studies of Telomycin Reveal New Lipopeptides with Enhanced Activity. , 2015, Journal of the American Chemical Society.