Technical photosynthesis involving CO2 electrolysis and fermentation

[1]  Michael Grätzel,et al.  Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO , 2017, Nature Energy.

[2]  H. Woo Solar-to-chemical and solar-to-fuel production from CO2 by metabolically engineered microorganisms. , 2017, Current opinion in biotechnology.

[3]  R. Margolis,et al.  Terawatt-scale photovoltaics: Trajectories and challenges , 2017, Science.

[4]  K. Winzer,et al.  Metabolic engineering of Clostridium autoethanogenum for selective alcohol production , 2017, Metabolic engineering.

[5]  Colin F. Dickens,et al.  Combining theory and experiment in electrocatalysis: Insights into materials design , 2017, Science.

[6]  James M. Clomburg,et al.  Industrial biomanufacturing: The future of chemical production , 2017, Science.

[7]  Eleftherios T. Papoutsakis,et al.  CO2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion , 2016, Nature Communications.

[8]  Joseph H. Montoya,et al.  A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction , 2016, Science.

[9]  Mohammad Asadi,et al.  Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid , 2016, Science.

[10]  Pamela A. Silver,et al.  Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis , 2016, Science.

[11]  B. Heijstra,et al.  Gas Fermentation—A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks , 2016, Front. Microbiol..

[12]  D. Guldi,et al.  Overpotentials and Faraday Efficiencies in CO2 Electrocatalysis–the Impact of 1‐Ethyl‐3‐Methylimidazolium Trifluoromethanesulfonate , 2016 .

[13]  A. Polman,et al.  Photovoltaic materials: Present efficiencies and future challenges , 2016, Science.

[14]  A. Stams,et al.  Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas , 2016, Biotechnology for Biofuels.

[15]  Gregory Stephanopoulos,et al.  Integrated bioprocess for conversion of gaseous substrates to liquids , 2016, Proceedings of the National Academy of Sciences.

[16]  Q. Fu,et al.  Selective conversion of syngas to light olefins , 2016, Science.

[17]  Xun Lu,et al.  The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. , 2016, Physical chemistry chemical physics : PCCP.

[18]  P. Dürre Butanol formation from gaseous substrates. , 2016, FEMS microbiology letters.

[19]  L. T. Angenent,et al.  Chain Elongation with Reactor Microbiomes: Open-Culture Biotechnology To Produce Biochemicals. , 2016, Environmental science & technology.

[20]  Niklas von der Assen,et al.  Selecting CO2 Sources for CO2 Utilization by Environmental-Merit-Order Curves. , 2016, Environmental science & technology.

[21]  Jinlong Yang,et al.  Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel , 2016, Nature.

[22]  R. Service,et al.  Cost of carbon capture drops, but does anyone want it? , 2016, Science.

[23]  V. Müller,et al.  Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria , 2015, Biotechnology for Biofuels.

[24]  J. R. Phillips,et al.  Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: Medium development and culture techniques. , 2015, Bioresource technology.

[25]  S. Nagaraju,et al.  Energy Conservation Associated with Ethanol Formation from H2 and CO2 in Clostridium autoethanogenum Involving Electron Bifurcation , 2015, Journal of bacteriology.

[26]  Antonio Abate,et al.  Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics , 2015, Nature Communications.

[27]  K. Ohkubo,et al.  Selective electrochemical reduction of CO2 to CO with a cobalt chlorin complex adsorbed on multi-walled carbon nanotubes in water. , 2015, Chemical communications.

[28]  Ibram Ganesh,et al.  Solar fuels vis-à-vis electricity generation from sunlight: The current state-of-the-art (a review) , 2015 .

[29]  P. Yang,et al.  Artificial photosynthesis for sustainable fuel and chemical production. , 2015, Angewandte Chemie.

[30]  Pamela A Silver,et al.  Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system , 2015, Proceedings of the National Academy of Sciences.

[31]  T. Meyer,et al.  Electrocatalytic Reduction of Carbon Dioxide: Let the Molecules Do the Work , 2015, Topics in Catalysis.

[32]  M. Kärkäs,et al.  Artificial photosynthesis: molecular systems for catalytic water oxidation. , 2014, Chemical reviews.

[33]  Etosha R. Cave,et al.  Insights into the electrocatalytic reduction of CO₂ on metallic silver surfaces. , 2014, Physical chemistry chemical physics : PCCP.

[34]  Margit Winkler,et al.  Biocatalytic reduction of carboxylic acids , 2014, Biotechnology journal.

[35]  Gang Xu,et al.  An Improved CO2 Separation and Purification System Based on Cryogenic Separation and Distillation Theory , 2014 .

[36]  R. Tanner,et al.  Improved conversion efficiencies for n-fatty acid reduction to primary alcohols by the solventogenic acetogen “Clostridium ragsdalei” , 2014, Journal of Industrial Microbiology & Biotechnology.

[37]  R. Thauer,et al.  NADP-Specific Electron-Bifurcating [FeFe]-Hydrogenase in a Functional Complex with Formate Dehydrogenase in Clostridium autoethanogenum Grown on CO , 2013, Journal of bacteriology.

[38]  L. T. Angenent,et al.  Biocatalytic reduction of short‐chain carboxylic acids into their corresponding alcohols with syngas fermentation , 2013, Biotechnology and bioengineering.

[39]  Christopher A. Bonino,et al.  Let the molecules do the work , 2013 .

[40]  Kwang Myung Cho,et al.  Integrated Electromicrobial Conversion of CO2 to Higher Alcohols , 2012, Science.

[41]  Eric J. Dufek,et al.  Operation of a Pressurized System for Continuous Reduction of CO2 , 2012 .

[42]  H. Moayedi,et al.  Electrical Efficiency of Electrolytic Hydrogen Production , 2012, International Journal of Electrochemical Science.

[43]  Jakob Jörissen,et al.  Chlorherstellung mit Sauerstoffverzehrkathoden. Energieeinsparung bei der Elektrolyse , 2011 .

[44]  Eric J. Dufek,et al.  Influence of S Contamination on CO2 Reduction at Ag Electrodes , 2011 .

[45]  Fuli Li,et al.  The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features , 2008, Proceedings of the National Academy of Sciences.

[46]  Fuli Li,et al.  Coupled Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with NADH Catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from Clostridium kluyveri , 2007, Journal of bacteriology.

[47]  T. Hansen,et al.  Pathway of propionate formation from ethanol in Pelobacter propionicus , 1987, Archives of Microbiology.

[48]  T. Hermann Industrial production of amino acids by coryneform bacteria. , 2003, Journal of biotechnology.

[49]  Sang Yup Lee,et al.  Process analysis and economic evaluation for Poly(3-hydroxybutyrate) production by fermentation , 1997 .

[50]  Y. Hori,et al.  Electrolytic Reduction of Bicarbonate Ion at a Mercury Electrode , 1983 .

[51]  Yasuo Noda,et al.  Ethanol Production in Brazil , 1982 .

[52]  R. Thauer,et al.  Energy Conservation in Chemotrophic Anaerobic Bacteria , 1977, Bacteriological reviews.

[53]  R. Thauer,et al.  The energy metabolism of Clostridium kluyveri. , 1968, European journal of biochemistry.