The Human Gut Virome Is Highly Diverse, Stable, and Individual Specific.

[1]  J. Matthijnssens,et al.  What is (not) known about the dynamics of the human gut virome in health and disease. , 2019, Current opinion in virology.

[2]  A. Morozov,et al.  Phage-Resistant Phase-Variant Sub-populations Mediate Herd Immunity Against Bacteriophage Invasion of Bacterial Meta-Populations , 2019, Front. Microbiol..

[3]  H. Vlamakis,et al.  Microbial genes and pathways in inflammatory bowel disease , 2019, Nature Reviews Microbiology.

[4]  P. Silver,et al.  Dynamic Modulation of the Gut Microbiota and Metabolome by Bacteriophages in a Mouse Model , 2019, Cell host & microbe.

[5]  T. Sutton,et al.  Giant oversights in the human gut virome , 2019, Gut.

[6]  Evelien M. Adriaenssens,et al.  Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks , 2019, Nature Biotechnology.

[7]  Christine L. Sun,et al.  Clades of huge phages from across Earth’s ecosystems , 2019, bioRxiv.

[8]  Jun Yu,et al.  Gut mucosal virome alterations in ulcerative colitis , 2019, Gut.

[9]  C. Hill,et al.  Bacteriophages of the Human Gut: The "Known Unknown" of the Microbiome. , 2019, Cell host & microbe.

[10]  Nicholas D. Youngblut,et al.  Virome Diversity Correlates with Intestinal Microbiome Diversity in Adult Monozygotic Twins. , 2019, Cell host & microbe.

[11]  L. Debarbieux,et al.  The Battle Within: Interactions of Bacteriophages and Bacteria in the Gastrointestinal Tract. , 2019, Cell host & microbe.

[12]  Ryan D. Crawford,et al.  Multiple phase-variable mechanisms, including capsular polysaccharides, modify bacteriophage susceptibility in Bacteroides thetaiotaomicron , 2019, bioRxiv.

[13]  F. Ryan,et al.  Long-term colonisation with donor bacteriophages following successful faecal microbial transplantation , 2018, Microbiome.

[14]  C. Hill,et al.  ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis , 2018, Nature Communications.

[15]  G. Sherlock,et al.  Transmission and persistence of crAssphage, a ubiquitous human-associated bacteriophage , 2018, bioRxiv.

[16]  T. Sutton,et al.  Biology and Taxonomy of crAss-like Bacteriophages, the Most Abundant Virus in the Human Gut. , 2018, Cell host & microbe.

[17]  L. Debarbieux,et al.  “I will survive”: A tale of bacteriophage-bacteria coevolution in the gut , 2018, Gut microbes.

[18]  W. D. de Vos,et al.  Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Where, and How? , 2018, Microorganisms.

[19]  F. Ryan,et al.  Viral Dark Matter in the Gut Virome of Elderly Humans , 2018 .

[20]  Brian C. Thomas,et al.  Megaphages infect Prevotella and variants are widespread in gut microbiomes , 2018, bioRxiv.

[21]  M. Breitbart,et al.  Phage puppet masters of the marine microbial realm , 2018, Nature Microbiology.

[22]  T. Sutton,et al.  Reproducible protocols for metagenomic analysis of human faecal phageomes , 2018, Microbiome.

[23]  M. Soares,et al.  Assessment of the gorilla gut virome in association with natural simian immunodeficiency virus infection , 2018, Retrovirology.

[24]  Chenli Liu,et al.  A human gut phage catalog correlates the gut phageome with type 2 diabetes , 2018, Microbiome.

[25]  Jun Wang,et al.  Quantitative microbiome profiling links gut community variation to microbial load , 2017, Nature.

[26]  F. Bushman,et al.  Viral communities of the human gut: metagenomic analysis of composition and dynamics , 2017, Mobile DNA.

[27]  Emiley A. Eloe-Fadrosh,et al.  Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity , 2017, PeerJ.

[28]  Arthur Brady,et al.  Strains, functions and dynamics in the expanded Human Microbiome Project , 2017, Nature.

[29]  P. Pevzner,et al.  metaSPAdes: a new versatile metagenomic assembler. , 2017, Genome research.

[30]  S. Duncan,et al.  Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics , 2017, The ISME Journal.

[31]  Dawn B. Goldsmith,et al.  Towards quantitative viromics for both double-stranded and single-stranded DNA viruses , 2016, PeerJ.

[32]  Eugene V. Koonin,et al.  Prokaryotic Virus Orthologous Groups (pVOGs): a resource for comparative genomics and protein family annotation , 2016, Nucleic Acids Res..

[33]  B. Dutilh,et al.  Contig annotation tool CAT robustly classifies assembled metagenomic contigs and long sequences , 2016 .

[34]  Benjamin Bolduc,et al.  Healthy human gut phageome , 2016, Proceedings of the National Academy of Sciences.

[35]  F. Rohwer,et al.  Piggyback-the-Winner in host-associated microbial communities , 2016, npj Biofilms and Microbiomes.

[36]  C. Desnues,et al.  Viral metagenomics: are we missing the giants? , 2016, Current opinion in microbiology.

[37]  M. Sullivan,et al.  Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses , 2016, The ISME Journal.

[38]  Douglas S Kwon,et al.  Altered Virome and Bacterial Microbiome in Human Immunodeficiency Virus-Associated Acquired Immunodeficiency Syndrome. , 2016, Cell host & microbe.

[39]  Wen J. Li,et al.  Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation , 2015, Nucleic Acids Res..

[40]  Duy Tin Truong,et al.  MetaPhlAn2 for enhanced metagenomic taxonomic profiling , 2015, Nature Methods.

[41]  Forest Rohwer,et al.  Gut DNA viromes of Malawian twins discordant for severe acute malnutrition , 2015, Proceedings of the National Academy of Sciences.

[42]  Tanja Woyke,et al.  Viral dark matter and virus–host interactions resolved from publicly available microbial genomes , 2015, eLife.

[43]  Jeroen Raes,et al.  Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates , 2015, Gut.

[44]  Matthew B. Sullivan,et al.  VirSorter: mining viral signal from microbial genomic data , 2015, PeerJ.

[45]  Jenny Sauk,et al.  Disease-Specific Alterations in the Enteric Virome in Inflammatory Bowel Disease , 2015, Cell.

[46]  Eric J Alm,et al.  Host lifestyle affects human microbiota on daily timescales , 2014, Genome Biology.

[47]  R. Edwards,et al.  A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes , 2014, Nature Communications.

[48]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[49]  Derrick E. Wood,et al.  Kraken: ultrafast metagenomic sequence classification using exact alignments , 2014, Genome Biology.

[50]  J. Gordon,et al.  Gnotobiotic mouse model of phage–bacterial host dynamics in the human gut , 2013, Proceedings of the National Academy of Sciences.

[51]  Frederic D Bushman,et al.  Rapid evolution of the human gut virome , 2013, Proceedings of the National Academy of Sciences.

[52]  J. Clemente,et al.  The Long-Term Stability of the Human Gut Microbiota , 2013 .

[53]  H. Neve,et al.  Identification of a New P335 Subgroup through Molecular Analysis of Lactococcal Phages Q33 and BM13 , 2013, Applied and Environmental Microbiology.

[54]  J. Vogel,et al.  β-lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity , 2013, Nature Communications.

[55]  Curtis Huttenhower,et al.  A Guide to Enterotypes across the Human Body: Meta-Analysis of Microbial Community Structures in Human Microbiome Datasets , 2013, PLoS Comput. Biol..

[56]  Axel Poulet,et al.  Evolution and Diversity of the Microviridae Viral Family through a Collection of 81 New Complete Genomes Assembled from Virome Reads , 2012, PloS one.

[57]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[58]  D. Lindell,et al.  Virus-host swinging party in the oceans , 2012, Mobile genetic elements.

[59]  R. Leplae,et al.  A modular view of the bacteriophage genomic space: identification of host and lifestyle marker modules. , 2011, Research in microbiology.

[60]  F. Bushman,et al.  The human gut virome: inter-individual variation and dynamic response to diet. , 2011, Genome research.

[61]  Kyoung-Ho Kim,et al.  Amplification Methods Bias Metagenomic Libraries of Uncultured Single-Stranded and Double-Stranded DNA Viruses , 2011, Applied and Environmental Microbiology.

[62]  W. D. de Vos,et al.  Intestinal Microbiota in Healthy Adults: Temporal Analysis Reveals Individual and Common Core and Relation to Intestinal Symptoms , 2011, PloS one.

[63]  P. Forterre,et al.  Microviridae Goes Temperate: Microvirus-Related Proviruses Reside in the Genomes of Bacteroidetes , 2011, PloS one.

[64]  Forest Rohwer,et al.  Viruses in the fecal microbiota of monozygotic twins and their mothers , 2010, Nature.

[65]  B. Haas,et al.  A Catalog of Reference Genomes from the Human Microbiome , 2010, Science.

[66]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[67]  E. Denou,et al.  In vivo replication of T4 and T7 bacteriophages in germ-free mice colonized with Escherichia coli. , 2009, Virology.

[68]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[69]  Florent E. Angly,et al.  Viral diversity and dynamics in an infant gut. , 2008, Research in microbiology.

[70]  Robert C. Edgar,et al.  PILER-CR: Fast and accurate identification of CRISPR repeats , 2007, BMC Bioinformatics.

[71]  Tao Zhang,et al.  RNA Viral Community in Human Feces: Prevalence of Plant Pathogenic Viruses , 2005, PLoS biology.

[72]  P. Salamon,et al.  Metagenomic Analyses of an Uncultured Viral Community from Human Feces , 2003, Journal of bacteriology.

[73]  G. Bratbak,et al.  Bacteriophage Ecology: Aquatic phage ecology , 2008 .