Variation Ontology for annotation of variation effects and mechanisms

Ontology organizes and formally conceptualizes information in a knowledge domain with a controlled vocabulary having defined terms and relationships between them. Several ontologies have been used to annotate numerous databases in biology and medicine. Due to their unambiguous nature, ontological annotations facilitate systematic description and data organization, data integration and mining, and pattern recognition and statistics, as well as development of analysis and prediction tools. The Variation Ontology (VariO) was developed to allow the annotation of effects, consequences, and mechanisms of DNA, RNA, and protein variations. Variation types are systematically organized, and a detailed description of effects and mechanisms is possible. VariO is for annotating the variant, not the normal-state features or properties, and requires a reference (e.g., reference sequence, reference-state property, activity, etc.) compared to which the changes are indicated. VariO is versatile and can be used for variations ranging from genomic multiplications to single nucleotide or amino acid changes, whether of genetic or nongenetic origin. VariO annotations are position-specific and can be used for variations in any organism.

[1]  Mauno Vihinen,et al.  VariBench: A Benchmark Database for Variations , 2013, Human mutation.

[2]  Morris A. Swertz,et al.  VarioML framework for comprehensive variation data representation and exchange , 2012, BMC Bioinformatics.

[3]  Mauno Vihinen,et al.  Guidelines for establishing locus specific databases , 2012, Human mutation.

[4]  Nicolas Le Novère,et al.  Identifiers.org and MIRIAM Registry: community resources to provide persistent identification , 2011, Nucleic Acids Res..

[5]  Jeroen F. J. Laros,et al.  LOVD v.2.0: the next generation in gene variant databases , 2011, Human mutation.

[6]  Michael J. Lush,et al.  genenames.org: the HGNC resources in 2011 , 2010, Nucleic Acids Res..

[7]  Sue Povey,et al.  How to catch all those mutations—the report of the Third Human Variome Project Meeting, UNESCO Paris, May 2010 , 2010, Human mutation.

[8]  R. E. Tully,et al.  Locus Reference Genomic sequences: an improved basis for describing human DNA variants , 2010, Genome Medicine.

[9]  A. Tsuji,et al.  A critical role for highly conserved Glu(610) residue of oligopeptidase B from Trypanosoma brucei in thermal stability. , 2010, Journal of biochemistry.

[10]  John L Hopper,et al.  Classifying MLH1 and MSH2 variants using bioinformatic prediction, splicing assays, segregation, and tumor characteristics , 2009, Human mutation.

[11]  Jonathan Bond,et al.  A large kindred with X‐linked neutropenia with an I294T mutation of the Wiskott‐Aldrich syndrome gene , 2009, British journal of haematology.

[12]  Chris Mungall,et al.  AmiGO: online access to ontology and annotation data , 2008, Bioinform..

[13]  P. Robinson,et al.  The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. , 2008, American journal of human genetics.

[14]  Adel Golovin,et al.  MSDmotif: exploring protein sites and motifs , 2008, BMC Bioinformatics.

[15]  Johan T den Dunnen,et al.  Improving sequence variant descriptions in mutation databases and literature using the Mutalyzer sequence variation nomenclature checker , 2008, Human mutation.

[16]  M. Ashburner,et al.  The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration , 2007, Nature Biotechnology.

[17]  Gary D Bader,et al.  BMC Biology BioMed Central , 2007 .

[18]  Midori A. Harris,et al.  BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btm112 Databases and ontologies OBO-Edit—an ontology editor for biologists , 2007 .

[19]  Milan Macek,et al.  FINDbase: a relational database recording frequencies of genetic defects leading to inherited disorders worldwide , 2006, Nucleic Acids Res..

[20]  Christine Kinnon,et al.  Two novel activating mutations in the Wiskott-Aldrich syndrome protein result in congenital neutropenia. , 2006, Blood.

[21]  Akinori Sarai,et al.  ProTherm and ProNIT: thermodynamic databases for proteins and protein–nucleic acid interactions , 2005, Nucleic Acids Res..

[22]  George P Patrinos,et al.  Hellenic National Mutation Database: a prototype database for mutations leading to inherited disorders in the Hellenic population , 2005, Human mutation.

[23]  S. Shurtleff,et al.  Genetic analysis of patients with defects in early B‐cell development , 2005, Immunological reviews.

[24]  G. Roberto Burgio,et al.  The Wiskott-Aldrich syndrome , 1995, European Journal of Pediatrics.

[25]  R. Durbin,et al.  The Sequence Ontology: a tool for the unification of genome annotations , 2005, Genome Biology.

[26]  Silvia Giliani,et al.  Mutations of the Wiskott-Aldrich Syndrome Protein (WASP): hotspots, effect on transcription, and translation and phenotype/genotype correlation. , 2004, Blood.

[27]  J. V. van Dongen,et al.  XLA Patients with BTK Splice-Site Mutations Produce Low Levels of Wild-Type BTK Transcripts , 2002, Journal of Clinical Immunology.

[28]  L. Notarangelo,et al.  Missense mutations of the WASP gene cause intermittent X-linked thrombocytopenia. , 2002, Blood.

[29]  Koenraad Devriendt,et al.  Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia , 2001, Nature Genetics.

[30]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[31]  M. Vihinen,et al.  Six X-Linked Agammaglobulinemia-Causing Missense Mutations in the Src Homology 2 Domain of Bruton’s Tyrosine Kinase: Phosphotyrosine-Binding and Circular Dichroism Analysis1 , 2000, The Journal of Immunology.

[32]  S. Antonarakis,et al.  Mutation nomenclature extensions and suggestions to describe complex mutations: A discussion , 2000 .

[33]  M. Vihinen,et al.  Immunodeficiency mutation databases (IDbases). , 1998, Human mutation.

[34]  K. Sullivan,et al.  Discordant phenotype in siblings with X-linked agammaglobulinemia. , 1996, American journal of human genetics.

[35]  Thomas R. Gruber,et al.  Toward principles for the design of ontologies used for knowledge sharing? , 1995, Int. J. Hum. Comput. Stud..

[36]  F. Rosen,et al.  Characterization of germline mutations of the gene encoding Bruton's tyrosine kinase in families with X‐linked agammaglobulinemia , 1995, Human mutation.

[37]  R. Lovering,et al.  Mutation detection in the X-linked agammaglobulinemia gene, BTK, using single strand conformation polymorphism analysis. , 1994, Human molecular genetics.