Magnetic properties and energy-mapping analysis.

The magnetic energy levels of a given magnetic solid are closely packed in energy because the interactions between magnetic ions are weak. Thus, in describing its magnetic properties, one needs to generate its magnetic energy spectrum by employing an appropriate spin Hamiltonian. In this review article we discuss how to determine and specify a necessary spin Hamiltonian in terms of first principles electronic structure calculations on the basis of energy-mapping analysis and briefly survey important concepts and phenomena that one encounters in reading the current literature on magnetic solids. Our discussion is given on a qualitative level from the perspective of magnetic energy levels and electronic structures. The spin Hamiltonian appropriate for a magnetic system should be based on its spin lattice, i.e., the repeat pattern of its strong magnetic bonds (strong spin exchange paths), which requires one to evaluate its Heisenberg spin exchanges on the basis of energy-mapping analysis. Other weaker energy terms such as Dzyaloshinskii-Moriya (DM) spin exchange and magnetocrystalline anisotropy energies, which a spin Hamiltonian must include in certain cases, can also be evaluated by performing energy-mapping analysis. We show that the spin orientation of a transition-metal magnetic ion can be easily explained by considering its split d-block levels as unperturbed states with the spin-orbit coupling (SOC) as perturbation, that the DM exchange between adjacent spin sites can become comparable in strength to the Heisenberg spin exchange when the two spin sites are not chemically equivalent, and that the DM interaction between rare-earth and transition-metal cations is governed largely by the magnetic orbitals of the rare-earth cation.

[1]  N. Spaldin,et al.  J dependence in the LSDA plus U treatment of noncollinear magnets , 2010 .

[2]  Michel J. P. Gingras,et al.  Spin Ice State in Frustrated Magnetic Pyrochlore Materials , 2001, Science.

[3]  Clarence Zener,et al.  Interaction between the d -Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure , 1951 .

[4]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[5]  Jan Kuneš,et al.  Electronic structure of fcc Th: Spin-orbit calculation with 6 p 1'2 local orbital extension , 2001 .

[6]  F. Illas,et al.  Ab initio theoretical comparative study of magnetic coupling in KNiF 3 sand K 2 NiF 4 s , 1997 .

[7]  小口 武彦 D. C. Mattis: The Theory of Magnetism, I and II, Springer-Verlag, Berlin and New York, 1981 and 1985, 24×16cm, I: xx+300ページ, 8,640円, II: xii+178ページ, 9,840円 (Springer Series in Solid-State Sciences, Vols. 17 and 55). , 1986 .

[8]  Dadi Dai,et al.  Spin exchange interactions and magnetic structures of extended magnetic solids with localized spins: theoretical descriptions on formal, quantitative and qualitative levels , 2003 .

[9]  M. Whangbo,et al.  Spin-Hamiltonian and density functional theory descriptions of spin exchange interactions , 2001 .

[10]  M. Whangbo,et al.  Non-Idle-Spin Behavior and Field-Induced Magnetic Transitions of the Triple Chain Magnet Cu3(OH)4SO4 , 2012 .

[11]  S. Hirata,et al.  Electronic structure of Ca 3CoXO 6 (X=Co, Rh, Ir) studied by x-ray photoemission spectroscopy , 2005 .

[12]  C. Martin,et al.  Giant Improper Ferroelectricity in the Ferroaxial Magnet CaMn 7 O 12 , 2011, 1110.4585.

[13]  John E. Greedan,et al.  Geometrically frustrated magnetic materials , 2001 .

[14]  E. Davidson,et al.  Ligand spin polarization and antiferromagnetic coupling in transition metal dimers , 1986 .

[15]  E. Collet,et al.  Ferromagnetically coupled Shastry-Sutherland quantum spin singlets in (CuCl)LaNb₂O₇. , 2010, Physical review letters.

[16]  J. Attfield Exchange striction and exchange constants in Bi2CuO4 , 1989 .

[17]  D. Machin,et al.  Magnetism and transition metal complexes , 1973 .

[18]  M. Whangbo,et al.  Determination of the spin-lattice relevant for the quaternary magnetic oxide Bi4Cu3V2O14 on the basis of tight-binding and density functional calculations. , 2008, Inorganic chemistry.

[19]  F. Haldane Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model , 1983 .

[20]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .

[21]  M. Whangbo,et al.  Investigation of the incommensurate and commensurate magnetic superstructures of LiCuVO4 and CuO on the basis of the isotropic spin exchange and classical spin approximations. , 2004, Inorganic chemistry.

[22]  R. Hemley,et al.  BaCuSi 2 O 6 ; a new cyclosilicate with four-membered tetrahedral rings , 1989 .

[23]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[24]  M. Itoh,et al.  BaCu2V2O8: Quasi-one-dimensional alternating chain compound with a large spin gap , 2004 .

[25]  M. Imai,et al.  1 ∕ 3 magnetization plateau observed in the spin- 1 ∕ 2 trimer chain compound Cu 3 ( P 2 O 6 O H ) 2 , 2006 .

[26]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[27]  M. Whangbo,et al.  Importance of the O-M-O bridges (M = V5+, Mo6+) for the spin-exchange interactions in the magnetic oxides of Cu2+ ions bridged by MO4 tetrahedra: spin-lattice models of Rb2Cu2(MoO4)3, BaCu2V2O8, and KBa3Ca4Cu3V7O28. , 2006, Inorganic chemistry.

[28]  C. L. Zhang,et al.  Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3. , 2005, Physical review letters.

[29]  S. Ji,et al.  Orbital order and partial electronic delocalization in a triangular magnetic metal Ag2MnO2 , 2010 .

[30]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[31]  H. Xiang,et al.  Origin of the structural and magnetic anomalies of the layered compound SrFeO2: a density functional investigation. , 2008, Physical review letters.

[32]  H. Xiang,et al.  Effect of magnetic dipole-dipole interactions on the spin orientation and magnetic ordering of the spin-ladder compound Sr3Fe2O5. , 2009, Inorganic chemistry.

[33]  K. Ozawa,et al.  Direct observation of the energy gap generating the 1 ∕ 3 magnetization plateau in the spin- 1 ∕ 2 trimer chain compound Cu 3 ( P 2 O 6 O D ) 2 by inelastic neutron scattering measurements , 2007 .

[34]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[35]  Hongjun Xiang,et al.  Effects of spin‐orbit coupling on magnetic properties of discrete and extended magnetic systems , 2008, J. Comput. Chem..

[36]  E. N. Maslen,et al.  Structure, electron density and thermal motion of KCuF3 , 1990 .

[37]  M. Whangbo,et al.  Spin exchange interactions of a spin dimer: Analysis of broken-symmetry spin states in terms of the eigenstates of Heisenberg and Ising spin Hamiltonians , 2003 .

[38]  Sólyom Competing bilinear and biquadratic exchange couplings in spin-1 Heisenberg chains. , 1987, Physical review. B, Condensed matter.

[39]  Nevill Mott,et al.  Metal-insulator transitions , 1974 .

[40]  J. Mitchell,et al.  Continuous metal-insulator transition of the antiferromagnetic perovskite NaOsO3 , 2009 .

[41]  John B. Goodenough,et al.  Magnetism and the chemical bond , 1963 .

[42]  M. Whangbo,et al.  Classical spin and quantum-mechanical descriptions of geometric spin frustration. , 2004, The Journal of chemical physics.

[43]  G. Giovannetti,et al.  High-T(c) ferroelectricity emerging from magnetic degeneracy in cupric oxide. , 2010, Physical review letters.

[44]  G. McIntyre,et al.  Incommensurate antiferromagnetic order in the quantum chain compound LiCuVO4 , 2004 .

[45]  S. Margadonna,et al.  Nd-induced Mn spin-reorientation transition in NdMnAsO , 2010, 1010.6145.

[46]  B. Ouladdiaf,et al.  Magnetic Ordering in the Frustrated Heisenberg Chain System Cupric Chloride, CuCl$_2$ , 2009, 0904.2929.

[47]  M. Whangbo,et al.  Consequences of the intrachain dimer–monomer spin frustration and the interchain dimer–monomer spin exchange in the diamond-chain compound azurite Cu3(CO3)2(OH)2 , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[48]  R. Sarkar,et al.  V 51 NMR study of the quasi-one-dimensional alternating chain compound BaCu 2 V 2 O 8 , 2005 .

[49]  Takashi Watanabe,et al.  Spin-ladder iron oxide: Sr3Fe2O5. , 2008, Angewandte Chemie.

[50]  Francesc Illas,et al.  A unified view of the theoretical description of magnetic coupling in molecular chemistry and solid state physics. , 2006, Physical chemistry chemical physics : PCCP.

[51]  N. Emery,et al.  Variable temperature study of the crystal and magnetic structures of the giant magnetoresistant materials LMnAsO (L =La, Nd) , 2011, 1207.0961.

[52]  K. Krämer,et al.  Reconciling exchange striction with biquadratic exchange in KMn0.1Zn0.9F3: An inelastic neutron scattering study , 2008 .

[53]  John C. Slater,et al.  Magnetic Effects and the Hartree-Fock Equation , 1951 .

[54]  G. Kresse,et al.  Unraveling the Jahn-Teller effect in Mn-doped GaN using the Heyd-Scuseria-Ernzerhof hybrid functional , 2009, 0904.2140.

[55]  Christian Holm,et al.  Optimizing working parameters of the smooth particle mesh Ewald algorithm in terms of accuracy and efficiency. , 2010, The Journal of chemical physics.

[56]  Willie J Padilla,et al.  Searching for the Slater transition in the pyrochlore Cd 2 Os 2 O 7 with infrared spectroscopy , 2002, cond-mat/0201548.

[57]  M. Whangbo,et al.  Analysis of the uniaxial magnetic properties of high-spin d(6) ions at trigonal prism and linear two-coordinate sites: uniaxial magnetic properties of Ca(3)Co(2)O(6) and Fe[C(SiMe(3))(3)](2). , 2005, Inorganic chemistry.

[58]  A. Revcolevschi,et al.  Easy plane anisotropy in Bi2CuO4 , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[59]  Louis Noodleman,et al.  Valence bond description of antiferromagnetic coupling in transition metal dimers , 1981 .

[60]  F. Haldane Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State , 1983 .

[61]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[62]  M. Whangbo Mott–Hubbard condition for electron localization in the Hartree–Fock band theory , 1979 .

[63]  T. Moriya New Mechanism of Anisotropic Superexchange Interaction , 1960 .

[64]  G. L. Squires,et al.  Introduction to the Theory of Thermal Neutron Scattering: Neutron optics , 1978 .

[65]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[66]  H. Kageyama,et al.  Infinite-layer iron oxide with a square-planar coordination , 2007, Nature.

[67]  Su-Huai Wei,et al.  Predicting the spin-lattice order of frustrated systems from first principles , 2011, 1106.5549.

[68]  Masaki Oshikawa,et al.  Magnetization Plateaus in Spin Chains: “Haldane Gap” for Half-Integer Spins , 1997 .

[69]  Philip W. Anderson,et al.  New Approach to the Theory of Superexchange Interactions , 1959 .

[70]  Roald Hoffmann,et al.  Orbital interactions in metal dimer complexes , 1975 .

[71]  Chanchal K. Majumdar,et al.  On Next‐Nearest‐Neighbor Interaction in Linear Chain. II , 1969 .

[72]  Elliott H. Lieb,et al.  A proof of part of Haldane's conjecture on spin chains , 1986 .

[73]  H. Xiang,et al.  Spin-orbit coupling and ion displacements in multiferroic TbMnO3. , 2008, Physical review letters.

[74]  B. White,et al.  Three-dimensional Ising behavior of antiferromagneticBi2CuO4 , 2010 .

[75]  Jia Liu,et al.  Investigation of the spin exchange interactions and the magnetic structure of the high-temperature multiferroic CuBr 2 , 2012 .

[76]  M. R. Freeman,et al.  Shape effects on magnetization state transitions in individual 160-nm diameter Permalloy disks , 2008 .

[77]  K. Schwarz,et al.  Comment on "High-Tc ferroelectricity emerging from magnetic degeneracy in cupric oxide". , 2011, Physical review letters.

[78]  W. G. Stirling,et al.  Presumption for a Quantum Energy Gap in the Quasi-One-Dimensional S?=?1 Heisenberg Antiferromagnet Ni(C2H8N2)2NO2(ClO4) , 1987 .

[79]  J. H. Yang,et al.  Strong Dzyaloshinskii-Moriya interaction and origin of ferroelectricity in Cu2OSeO3. , 2012, Physical review letters.

[80]  Anne M. LaPointe,et al.  Virtual free ion magnetism and the absence of Jahn-Teller distortion in a linear two-coordinate complex of high-spin iron(II). , 2004, Journal of the American Chemical Society.

[81]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[82]  Wu,et al.  Torque method for the theoretical determination of magnetocrystalline anisotropy. , 1996, Physical review. B, Condensed matter.

[83]  M. Whangbo,et al.  Finite magnetization plateau from a two-dimensional antiferromagnet: density functional analysis of the magnetic structure of Cu3(P2O6OH)2. , 2010, Inorganic chemistry.

[84]  Philip W. Anderson,et al.  Antiferromagnetism. Theory of Superexchange Interaction , 1950 .

[85]  M. Whangbo,et al.  On the importance of the interplaquette spin exchanges in Na3RuO4: density functional theory analysis of the spin exchange and magnetic properties. , 2010, Inorganic chemistry.

[86]  K. Kugel,et al.  The Jahn-Teller effect and magnetism: transition metal compounds , 1982 .

[87]  M. Azuma,et al.  High Field ESR Study of the S=1/2 Diamond-Chain Substance Cu3(CO3)2(OH)2 up to the Magnetization Plateau Region , 2003 .

[88]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[89]  H. Kageyama,et al.  57Fe Mössbauer Spectroscopic Study on Fe2+-Oxides with Infinite-Layer and Ladder Structures , 2010 .

[90]  D. Vanderbilt,et al.  Spin-phonon coupling effects in transition-metal perovskites: A DFT + U and hybrid-functional study , 2011, 1112.5205.

[91]  M. Whangbo,et al.  Analysis of the spin lattice model for the spin-gapped layered compounds Na(3)Cu(2)SbO(6) and Na(2)Cu(2)TeO(6) on the basis of electronic structure calculations. , 2008, Inorganic chemistry.