Watching Individual Enzymes at Work

[1]  J. Hofkens,et al.  Linking phospholipase mobility to activity by single-molecule wide-field microscopy. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  R. Nussinov,et al.  Folding and binding cascades: Dynamic landscapes and population shifts , 2008, Protein science : a publication of the Protein Society.

[3]  M. Roeffaers,et al.  Exploration of single molecule events in a haloperoxidase and its biomimic: localization of halogenation activity. , 2008, Journal of the American Chemical Society.

[4]  F. Forneris,et al.  Enzymes Without Borders: Mobilizing Substrates, Delivering Products , 2008, Science.

[5]  A. C. Simonsen Activation of phospholipase A2 by ternary model membranes. , 2008, Biophysical journal.

[6]  J. Hofkens,et al.  Water-soluble monofunctional perylene and terrylene dyes: powerful labels for single-enzyme tracking. , 2008, Angewandte Chemie.

[7]  H. F. Fisher,et al.  Enzymatic reaction sequences as coupled multiple traces on a multidimensional landscape. , 2008, Trends in biochemical sciences.

[8]  X. Xie,et al.  Two-dimensional reaction free energy surfaces of catalytic reaction: effects of protein conformational dynamics on enzyme catalysis. , 2008, The journal of physical chemistry. B.

[9]  D. Kern,et al.  Dynamic personalities of proteins , 2007, Nature.

[10]  Johan Hofkens,et al.  Dynamic disorder and stepwise deactivation in a chymotrypsin catalyzed hydrolysis reaction. , 2007, Journal of the American Chemical Society.

[11]  Hiroshi Uji-i,et al.  Single-molecule fluorescence spectroscopy in (bio)catalysis , 2007, Proceedings of the National Academy of Sciences.

[12]  J. Elf,et al.  Probing Transcription Factor Dynamics at the Single-Molecule Level in a Living Cell , 2007, Science.

[13]  F. Carrière,et al.  Exploring the specific features of interfacial enzymology based on lipase studies. , 2006, Biochimica et biophysica acta.

[14]  A. C. Simonsen,et al.  Hydrolysis of fluid supported membrane islands by phospholipase A(2): Time-lapse imaging and kinetic analysis. , 2006, Journal of colloid and interface science.

[15]  S. Benkovic,et al.  Relating protein motion to catalysis. , 2006, Annual review of biochemistry.

[16]  Amanda Yarnell,et al.  Nature's X-factors , 2006 .

[17]  Amanda Yarnell,et al.  INDIAN SCIENCE RISING , 2006 .

[18]  X. Xie,et al.  DNA primase acts as a molecular brake in DNA replication , 2006, Nature.

[19]  Antoine M. van Oijen,et al.  Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited , 2006, Nature chemical biology.

[20]  J. Hofkens,et al.  Energy dissipation in multichromophoric single dendrimers. , 2005, Accounts of chemical research.

[21]  Mircea Cotlet,et al.  Stretched exponential decay and correlations in the catalytic activity of fluctuating single lipase molecules. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Mircea Cotlet,et al.  Single-enzyme kinetics of CALB-catalyzed hydrolysis. , 2005, Angewandte Chemie.

[23]  Ole G. Mouritsen,et al.  Life - As a Matter of Fat , 2004 .

[24]  A. Butler,et al.  Vanadium bromoperoxidase-catalyzed biosynthesis of halogenated marine natural products. , 2004, Journal of the American Chemical Society.

[25]  M. Karplus,et al.  How Enzymes Work: Analysis by Modern Rate Theory and Computer Simulations , 2004, Science.

[26]  Charles C. Richardson,et al.  University of Groningen Single-Molecule Kinetics of λ Exonuclease Reveal Base Dependence and Dynamic Disorder , 2018 .

[27]  Dan S. Tawfik,et al.  Conformational diversity and protein evolution--a 60-year-old hypothesis revisited. , 2003, Trends in biochemical sciences.

[28]  Y. Urano,et al.  Development of Novel Fluorescence Probes That Can Reliably Detect Reactive Oxygen Species and Distinguish Specific Species* 210 , 2003, The Journal of Biological Chemistry.

[29]  C. Matthews,et al.  Sequential vs. parallel protein-folding mechanisms: experimental tests for complex folding reactions. , 2002, Biophysical chemistry.

[30]  R. Eisenthal,et al.  The temperature optima of enzymes: a new perspective on an old phenomenon. , 2001, Trends in biochemical sciences.

[31]  A. Svendsen,et al.  Interfacial control of lid opening in Thermomyces lanuginosa lipase. , 2000, Biochemistry.

[32]  Lars Edman,et al.  The fluctuating enzyme: a single molecule approach , 1999 .

[33]  X. Xie,et al.  Single-molecule enzymatic dynamics. , 1998, Science.

[34]  P. Kinnunen,et al.  Active serine involved in the stabilization of the active site loop in the Humicola lanuginosa lipase. , 1998, Biochemistry.

[35]  H. Gaub,et al.  Atomic force microscope imaging of phospholipid bilayer degradation by phospholipase A2. , 1998, Biophysical journal.

[36]  H Schindler,et al.  Single-molecule microscopy on model membranes reveals anomalous diffusion. , 1997, Biophysical journal.

[37]  C. Tsou Inactivation precedes overall molecular conformation changes during enzyme denaturation. , 1995, Biochimica et biophysica acta.

[38]  K. Hult,et al.  On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginosa lipase. , 1995, Biochimica et biophysica acta.

[39]  K. Schaumburg,et al.  Structure and dynamics of lipid monolayers: implications for enzyme catalysed lipolysis , 1995, Nature Structural Biology.

[40]  T A Jones,et al.  The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. , 1994, Structure.

[41]  P. Wolynes,et al.  The energy landscapes and motions of proteins. , 1991, Science.

[42]  A. Svendsen,et al.  Atomic force microscope visualization of lipid bilayer degradation due to action of phospholipase A2 and Humicola lanuginosa lipase. , 2007, Biochimica et biophysica acta.

[43]  D. Vos,et al.  A New Catalytic Route for the Oxidative Halogenation of Cyclic Enol Ethers using Tungstate Exchanged on Takovite , 2005 .

[44]  D. D. De Vos,et al.  Bromide-assisted oxidation of substituted phenols with hydrogen peroxide to the corresponding p-quinol and p-quinol ethers over WO4(2-)-exchanged layered double hydroxides. , 2004, Angewandte Chemie.

[45]  K. Dill,et al.  From Levinthal to pathways to funnels , 1997, Nature Structural Biology.

[46]  R. Verger ‘Interfacial activation’ of lipases: facts and artifacts , 1997 .