Investigation of the intermediate hydride phase β-LaNi5H3.5 by high pressure and high temperature gravimetry

[1]  V. Mordkovich,et al.  Studies of sorption-desorption processes in the CexLa1−xNi5−H2 system by DSC , 1990 .

[2]  V. Sinha,et al.  Influence of Hysteresis on the Thermodynamic Properties of the LaNi5 — H2 System* , 1989 .

[3]  J. J. Murray,et al.  The LaNi5—H2 System at T = 358K: An Investigation by Heat-Conduction Calorimetry* , 1989 .

[4]  H. Uchida,et al.  Current Problems in the Development and Application of Hydrogen Storage Materials* , 1989 .

[5]  E. Akiba,et al.  The Structure and Properties of LaNi5H3* , 1989 .

[6]  N. T. Kuznetsov,et al.  The system LaNi5H2 , 1988 .

[7]  E. Akiba,et al.  Time-of-flight neutron powder diffraction study of the LaNi5D3 structure , 1988 .

[8]  E. Akiba,et al.  A new hydride phase of LaNi5H3 , 1987 .

[9]  A. Matsushita,et al.  A new intermediate hydride in the LaNi5-H2 system studied by IN SITU X-ray diffractometry , 1986 .

[10]  E. Akiba,et al.  Phase transformations of the LaNi5-H2 system , 1985 .

[11]  S. Suda,et al.  Effects of lattice strain on the hysteresis of pressure-composition isotherms for the LaNi5H2 system , 1985 .

[12]  P. Goodell Stability of rechargeable hydriding alloys during extended cycling , 1984 .

[13]  H. Flotow,et al.  Configurational entropy and structure of β-LaNi5 hydride , 1981 .

[14]  A. Pasturel,et al.  Reply to “Configurational entropy and structure of β-LaNi5 hydride” , 1981 .

[15]  A. Pedersen,et al.  Magnesium for hydrogen storage , 1983 .

[16]  H. Flotow,et al.  Experimental heat capacities of LaNi5, α‐LaNi5H0.36, and β‐LaNi5H6.39 from 5 to 300 °K. Thermodynamic properties of the LaNi5–H2 system , 1980 .

[17]  R. Schmitt,et al.  A high-temperature, high-pressure microbalance for the determination of the hydrogen sorption characteristics of metal hydrides☆ , 1978 .

[18]  A. Biris,et al.  The solubility of deuterium in LaNi5 , 1976 .