Object Domain and Modality in the Ventral Visual Pathway

[1]  Talma Hendler,et al.  Eccentricity Bias as an Organizing Principle for Human High-Order Object Areas , 2002, Neuron.

[2]  Magdalena G. Wutte,et al.  Modality-Independent Coding of Spatial Layout in the Human Brain , 2011, Current Biology.

[3]  Benjamin D. Singer,et al.  Retinotopic Organization of Human Ventral Visual Cortex , 2009, The Journal of Neuroscience.

[4]  A. Caramazza,et al.  How Visual Is the Visual Cortex? Comparing Connectional and Functional Fingerprints between Congenitally Blind and Sighted Individuals , 2015, The Journal of Neuroscience.

[5]  R. Tootell,et al.  Thinking Outside the Box: Rectilinear Shapes Selectively Activate Scene-Selective Cortex , 2014, The Journal of Neuroscience.

[6]  D. Le Bihan,et al.  Distinct Cortical Areas for Names of Numbers and Body Parts Independent of Language and Input Modality , 2000, NeuroImage.

[7]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[8]  A. Caramazza,et al.  Tripartite Organization of the Ventral Stream by Animacy and Object Size , 2013, The Journal of Neuroscience.

[9]  Amir Amedi,et al.  Reading with Sounds: Sensory Substitution Selectively Activates the Visual Word Form Area in the Blind , 2012, Neuron.

[10]  J. Haxby,et al.  Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects , 1999, Nature Neuroscience.

[11]  Cathy J. Price,et al.  Fusiform Activation to Animals is Driven by the Process, Not the Stimulus , 2005, Journal of Cognitive Neuroscience.

[12]  Alfonso Caramazza,et al.  Representational Similarity of Body Parts in Human Occipitotemporal Cortex , 2015, The Journal of Neuroscience.

[13]  Talma Hendler,et al.  Center–periphery organization of human object areas , 2001, Nature Neuroscience.

[14]  Susan J. Lederman,et al.  Brain networks involved in haptic and visual identification of facial expressions of emotion: An fMRI study , 2010, NeuroImage.

[15]  M. Costantini,et al.  Haptic perception and body representation in lateral and medial occipito-temporal cortices , 2011, Neuropsychologia.

[16]  P. Matthews,et al.  Category-related activation for written words in the posterior fusiform is task specific , 2005, Neuropsychologia.

[17]  E. Warrington,et al.  CATEGORY SPECIFIC ACCESS DYSPHASIA , 1983 .

[18]  Alfonso Caramazza,et al.  Selectivity for large nonmanipulable objects in scene-selective visual cortex does not require visual experience , 2013, NeuroImage.

[19]  N. Kanwisher Functional specificity in the human brain: A window into the functional architecture of the mind , 2010, Proceedings of the National Academy of Sciences.

[20]  Jochen Kaiser,et al.  Probing category selectivity for environmental sounds in the human auditory brain , 2008, Neuropsychologia.

[21]  Amir Amedi,et al.  Origins of the specialization for letters and numbers in ventral occipitotemporal cortex , 2015, Trends in Cognitive Sciences.

[22]  Bradford Z. Mahon,et al.  The organization of conceptual knowledge: the evidence from category-specific semantic deficits , 2003, Trends in Cognitive Sciences.

[23]  Matthew H. Davis,et al.  Is there an anatomical basis for category-specificity? Semantic memory studies in PET and fMRI , 2002, Neuropsychologia.

[24]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[25]  P. Downing,et al.  Selectivity for the human body in the fusiform gyrus. , 2005, Journal of neurophysiology.

[26]  M. Peelen,et al.  Body and Object Effectors: The Organization of Object Representations in High-Level Visual Cortex Reflects Body–Object Interactions , 2013, Journal of Neuroscience.

[27]  Katrin Amunts,et al.  The mid-fusiform sulcus: A landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex , 2014, NeuroImage.

[28]  Leslie G. Ungerleider,et al.  Distributed Neural Systems for the Generation of Visual Images , 2000, Neuron.

[29]  N. Sadato,et al.  The Brain Network Underlying the Recognition of Hand Gestures in the Blind: The Supramodal Role of the Extrastriate Body Area , 2014, The Journal of Neuroscience.

[30]  C. Blakemore,et al.  Tactile perception recruits functionally related visual areas in the late-blind , 2006, Neuroreport.

[31]  N. Kanwisher,et al.  The Human Body , 2001 .

[32]  P. Pietrini,et al.  Mind the blind brain to understand the sighted one! Is there a supramodal cortical functional architecture? , 2014, Neuroscience & Biobehavioral Reviews.

[33]  C J Price,et al.  HOW IS THE FUSIFORM GYRUS RELATED TO CATEGORY-SPECIFICITY? , 2003, Cognitive neuropsychology.

[34]  Y. Mauss,et al.  Blindness and brain plasticity: contribution of mental imagery? An fMRI study. , 2004, Brain research. Cognitive brain research.

[35]  P. Downing,et al.  The neural basis of visual body perception , 2007, Nature Reviews Neuroscience.

[36]  A. Caramazza,et al.  Domain-Specific Knowledge Systems in the Brain: The Animate-Inanimate Distinction , 1998, Journal of Cognitive Neuroscience.

[37]  N. Kanwisher,et al.  Mental Imagery of Faces and Places Activates Corresponding Stimulus-Specific Brain Regions , 2000, Journal of Cognitive Neuroscience.

[38]  S. Lederman,et al.  Haptic face identification activates ventral occipital and temporal areas: An fMRI study , 2005, Brain and Cognition.

[39]  Russell A. Epstein,et al.  Multiple object properties drive scene-selective regions. , 2014, Cerebral cortex.

[40]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[41]  Uta Noppeney,et al.  Prior auditory information shapes visual category-selectivity in ventral occipito-temporal cortex , 2010, NeuroImage.

[42]  B. Mesquita,et al.  Adjustment to Chronic Diseases and Terminal Illness Health Psychology : Psychological Adjustment to Chronic Disease , 2006 .

[43]  Alison J. Wiggett,et al.  Functional MRI analysis of body and body part representations in the extrastriate and fusiform body areas. , 2007, Journal of neurophysiology.

[44]  Susan J. Lederman,et al.  Functional Specialization and Convergence in the Occipito-temporal Cortex Supporting Haptic and Visual Identification of Human Faces and Body Parts: An fMRI Study , 2009, Journal of Cognitive Neuroscience.

[45]  Justin L. Vincent,et al.  Novel domain formation reveals proto-architecture in inferotemporal cortex , 2014, Nature Neuroscience.

[46]  Alfonso Caramazza,et al.  Person- and place-selective neural substrates for entity-specific semantic access. , 2014, Cerebral cortex.

[47]  Katrin Amunts,et al.  Receptor architecture of visual areas in the face and word-form recognition region of the posterior fusiform gyrus , 2013, Brain Structure and Function.

[48]  Rebecca F. Schwarzlose,et al.  Separate face and body selectivity on the fusiform gyrus. , 2010, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  Alfonso Caramazza,et al.  Category-selective neural substrates for person- and place-related concepts , 2013, Cortex.

[50]  S. Lederman,et al.  Early visual experience and the recognition of basic facial expressions: involvement of the middle temporal and inferior frontal gyri during haptic identification by the early blind , 2012, Front. Hum. Neurosci..

[51]  Hanna Damasio,et al.  Naming the Same Entities from Visual or from Auditory Stimulation Engages Similar Regions of Left Inferotemporal Cortices , 2005, Journal of Cognitive Neuroscience.

[52]  Russell A. Epstein The cortical basis of visual scene processing , 2005 .

[53]  Alfonso Caramazza,et al.  Tool Selectivity in Left Occipitotemporal Cortex Develops without Vision , 2013, Journal of Cognitive Neuroscience.

[54]  Karl J. Friston,et al.  Two distinct neural mechanisms for category-selective responses. , 2006, Cerebral cortex.

[55]  Amir Amedi,et al.  Visual Cortex Extrastriate Body-Selective Area Activation in Congenitally Blind People “Seeing” by Using Sounds , 2014, Current Biology.

[56]  A. Caramazza,et al.  Category-Specific Organization in the Human Brain Does Not Require Visual Experience , 2009, Neuron.

[57]  A. Caramazza,et al.  Closely overlapping responses to tools and hands in left lateral occipitotemporal cortex. , 2012, Journal of neurophysiology.

[58]  T. Shallice,et al.  Category specific semantic impairments , 1984 .

[59]  Christian Scheiber,et al.  Neural substrates of animal mental imagery: calcarine sulcus and dorsal pathway involvement — an fMRI study , 2002, Brain Research.

[60]  Nancy Kanwisher,et al.  Structural Connectivity Fingerprints Predict Cortical Selectivity for Multiple Visual Categories across Cortex. , 2016, Cerebral cortex.

[61]  Aina Puce,et al.  Different categories of living and non-living sound-sources activate distinct cortical networks , 2009, NeuroImage.

[62]  A. Oliva,et al.  A Real-World Size Organization of Object Responses in Occipitotemporal Cortex , 2012, Neuron.

[63]  Bradford Z. Mahon,et al.  What drives the organization of object knowledge in the brain? , 2011, Trends in Cognitive Sciences.

[64]  Jennifer M. D. Yoon,et al.  Functionally Defined White Matter Reveals Segregated Pathways in Human Ventral Temporal Cortex Associated with Category-Specific Processing , 2015, Neuron.

[65]  M. Tarr,et al.  Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects , 1999, Nature Neuroscience.

[66]  James L. McClelland,et al.  A computational model of semantic memory impairment: modality specificity and emergent category specificity. , 1991, Journal of experimental psychology. General.

[67]  P. Pietrini,et al.  New light from the dark: what blindness can teach us about brain function. , 2011, Current opinion in neurology.

[68]  A. Ishai,et al.  Introduction Short-and Long-term Memory , 2022 .

[69]  Karl J. Friston,et al.  Anatomic Constraints on Cognitive Theories of Category Specificity , 2002, NeuroImage.

[70]  K. Grill-Spector,et al.  The functional architecture of the ventral temporal cortex and its role in categorization , 2014, Nature Reviews Neuroscience.

[71]  A. Schleicher,et al.  Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus , 2012, Brain Structure and Function.

[72]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[73]  Eleanor A Maguire,et al.  A New Role for the Parahippocampal Cortex in Representing Space , 2011, The Journal of Neuroscience.

[74]  Ken McRae,et al.  Category - Specific semantic deficits , 2008 .

[75]  Zeynep M. Saygin,et al.  Anatomical connectivity patterns predict face-selectivity in the fusiform gyrus , 2011, Nature Neuroscience.

[76]  E. DeYoe,et al.  Distinct Cortical Pathways for Processing Tool versus Animal Sounds , 2005, The Journal of Neuroscience.

[77]  T. Rogers,et al.  Anterior temporal cortex and semantic memory: Reconciling findings from neuropsychology and functional imaging , 2006, Cognitive, affective & behavioral neuroscience.