Seasonal and inter-annual variation in view angle effects on MODIS vegetation indices at three forest sites

[1]  C. Field,et al.  A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency , 1992 .

[2]  S. Goward,et al.  Vegetation canopy PAR absorptance and the normalized difference vegetation index - An assessment using the SAIL model , 1992 .

[3]  J. Peñuelas,et al.  Assessment of photosynthetic radiation‐use efficiency with spectral reflectance , 1995 .

[4]  J. Peñuelas,et al.  Relationship between photosynthetic radiation-use efficiency of barley canopies and the photochemical reflectance index (PRI) , 1996 .

[5]  J. Gamon,et al.  The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels , 1997, Oecologia.

[6]  Josep Peñuelas,et al.  Comparative field study of spring and summer leaf gas exchange and photobiology of the mediterranean trees Quercus ilex and Phillyrea latifolia , 1998 .

[7]  S. Sandmeier,et al.  Physical Mechanisms in Hyperspectral BRDF Data of Grass and Watercress , 1998 .

[8]  S. Sandmeier,et al.  Structure Analysis and Classification of Boreal Forests Using Airborne Hyperspectral Brdf Data from Asas Imagery and Processing Techniques Have Also Been Used Potential for Combining Both High Spectral Resolution And , 2022 .

[9]  T. A. Black,et al.  Remote sensing of photosynthetic-light-use efficiency of boreal forest , 2000 .

[10]  Dar A. Roberts,et al.  Modeling spatially distributed ecosystem flux of boreal forest using hyperspectral indices from AVIRIS imagery , 2001 .

[11]  D. Whitehead,et al.  The photochemical reflectance index as a measure of photosynthetic light use efficiency for plants with varying foliar nitrogen contents , 2002 .

[12]  Caroline J. Nichol,et al.  Remote sensing of photosynthetic-light-use efficiency of a Siberian boreal forest , 2002 .

[13]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[14]  Elizabeth Pattey,et al.  Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance , 2002 .

[15]  W. Oechel,et al.  Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species , 2002, Oecologia.

[16]  R. Lacaze,et al.  Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption , 2003 .

[17]  F. R. Schiebe,et al.  Canopy attributes of desert grassland and transition communities derived from multiangular airborne imagery , 2003 .

[18]  F. Gao,et al.  Detecting vegetation structure using a kernel-based BRDF model , 2003 .

[19]  Christopher B. Field,et al.  Assessing photosynthetic downregulation in sunflower stands with an optically-based model , 2004, Photosynthesis Research.

[20]  Hans Peter Schmid,et al.  Potential of MODIS ocean bands for estimating CO2 flux from terrestrial vegetation: A novel approach , 2004 .

[21]  D. Diner,et al.  Canopy Structure Parameters Derived from Multi-Angular Remote Sensing Data for Terrestrial Carbon Studies , 2004 .

[22]  S. Wofsy,et al.  Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data , 2004 .

[23]  Maosheng Zhao,et al.  A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production , 2004 .

[24]  S. Frolking,et al.  Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest , 2005 .

[25]  T. A. Black,et al.  A MODIS-derived photochemical reflectance index to detect inter-annual variations in the photosynthetic light-use efficiency of a boreal deciduous forest , 2005 .

[26]  W. Oechel,et al.  Parallel adjustments in vegetation greenness and ecosystem CO2 exchange in response to drought in a Southern California chaparral ecosystem , 2006 .

[27]  Ramakrishna R. Nemani,et al.  Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Bunkei Matsushita,et al.  Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-Density Cypress Forest , 2007, Sensors.

[29]  Eric Vermote,et al.  Atmospheric correction for the monitoring of land surfaces , 2008 .

[30]  W. Oechel,et al.  A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS , 2008 .

[31]  J. Peñuelas,et al.  Remote estimation of carbon dioxide uptake by a Mediterranean forest , 2008 .

[32]  Elizabeth M. Middleton,et al.  Regional mapping of gross light-use efficiency using MODIS spectral indices , 2008 .

[33]  David P. Roy,et al.  Generation of Temporally Complete Daily Nadir MODIS Reflectance Time Series , 2010 .

[34]  M. Schaepman,et al.  Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data , 2008 .

[35]  Mark A. Friedl,et al.  Sensitivity of vegetation phenology detection to the temporal resolution of satellite data , 2009 .

[36]  Thomas Hilker,et al.  An assessment of photosynthetic light use efficiency from space: Modeling the atmospheric and directional impacts on PRI reflectance , 2009 .

[37]  M. Friedl,et al.  Land Surface Phenology from MODIS: Characterization of the Collection 5 Global Land Cover Dynamics Product , 2010 .