Fast Cosine Transform to increase speed-up and efficiency of Karhunen-Loeve Transform for lossy image compression

In this work, we present a comparison between two techniques of image compression. In the first case, the image is divided in blocks which are collected according to zig-zag scan. In the second one, we apply the Fast Cosine Transform to the image, and then the transformed image is divided in blocks which are collected according to zig-zag scan too. Later, in both cases, the Karhunen-Loeve transform is applied to mentioned blocks. On the other hand, we present three new metrics based on eigenvalues for a better comparative evaluation of the techniques. Simulations show that the combined version is the best, with minor Mean Absolute Error (MAE) and Mean Squared Error (MSE), higher Peak Signal to Noise Ratio (PSNR) and better image quality. Finally, new technique was far superior to JPEG and JPEG2000.

[1]  N. Aranki,et al.  Hyperspectral data compression , 2003 .

[2]  K. Rao,et al.  Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations , 2006 .

[3]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Rajesh Hingorani,et al.  Multispectral KLT-wavelet data compression for Landsat thematic mapper images , 1992, Data Compression Conference, 1992..

[5]  Mei Tian,et al.  An investigation into using singular value decomposition as a method of image compression , 2005, 2005 International Conference on Machine Learning and Cybernetics.

[6]  K. R. Rao,et al.  The Transform and Data Compression Handbook , 2000 .

[7]  Ephraim Feig,et al.  New scaled DCT algorithms for fused multiply/add architectures , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[8]  Seong-Geun Kwon,et al.  Multispectral Image Data Compression Using Classified Prediction and KLT in Wavelet Transform Domain , 2002 .

[9]  MUNSI ALAUL HAQUE,et al.  A two-dimensional fast cosine transform , 1985, IEEE Trans. Acoust. Speech Signal Process..

[10]  Andrew G. Tescher,et al.  Practical transform coding of multispectral imagery , 1995, IEEE Signal Process. Mag..

[11]  R. Stevenson,et al.  Image Sequence Processing , 2015 .

[12]  Teresa H. Y. Meng,et al.  A comparison of fast inverse discrete cosine transform algorithms , 1994, Multimedia Systems.

[13]  Martin Vetterli,et al.  Fast 2-D discrete cosine transform , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[14]  Farhad Kamangar,et al.  Fast Algorithms for the 2-D Discrete Cosine Transform , 1982, IEEE Transactions on Computers.

[15]  K. J. Ray Liu,et al.  Real-time parallel and fully pipelined two-dimensional DCT lattice structures with application to HDTV systems , 1992, IEEE Trans. Circuits Syst. Video Technol..

[16]  Pierre Duhamel,et al.  Polynomial transform computation of the 2-D DCT , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[17]  Shawn Hunt,et al.  Fast piecewise linear predictors for lossless compression of hyperspectral imagery , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[18]  Paul Wintz,et al.  Instructor's manual for digital image processing , 1987 .

[19]  Gilbert Strang,et al.  The Discrete Cosine Transform , 1999, SIAM Rev..

[20]  G.S. Moschytz,et al.  Practical fast 1-D DCT algorithms with 11 multiplications , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[21]  Jungwoo Lee Optimized quadtree for Karhunen-Loeve transform in multispectral image coding , 1999, IEEE Trans. Image Process..

[22]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[23]  Pierre Duhamel,et al.  Hyperspectral Image Compression: Adapting SPIHT and EZW to Anisotropic 3-D Wavelet Coding , 2008, IEEE Transactions on Image Processing.

[24]  William L. Briggs,et al.  The DFT : An Owner's Manual for the Discrete Fourier Transform , 1987 .

[25]  D. Lieberman,et al.  Fourier analysis , 2004, Journal of cataract and refractive surgery.

[26]  Leonard McMillan,et al.  A forward-mapping realization of the inverse discrete cosine transform , 1992, Data Compression Conference, 1992..

[27]  Chao Lu,et al.  Mathematics of Multidimensional Fourier Transform Algorithms , 1993 .

[28]  K. J. Ray Liu,et al.  Transform Coder Classification for Digital Image Forensics , 2007, 2007 IEEE International Conference on Image Processing.

[29]  James F. Blinn,et al.  What's that deal with the DCT? , 1993, IEEE Computer Graphics and Applications.

[30]  Pierre Duhamel,et al.  A DCT chip based on a new structured and computationally efficient DCT algorithm , 1990, IEEE International Symposium on Circuits and Systems.

[31]  John L. Semmlow,et al.  Biosignal and biomedical image processing : MATLAB-based applications , 2004 .

[32]  R. R. Clarke Transform coding of images , 1985 .

[33]  Mathias Wien,et al.  Variable block size transforms for hybrid video coding , 2004 .

[34]  Sang Uk Lee,et al.  A fast algorithm for 2-D DCT , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[35]  S. A. Khayam The Discrete Cosine Transform ( DCT ) : Theory and Application 1 , 2003 .

[36]  Daoqiang Zhang,et al.  Fast image compression using matrix K-L transform , 2005, Neurocomputing.

[37]  R. Tolimieri,et al.  Algorithms for Discrete Fourier Transform and Convolution , 1989 .

[38]  N. Cho,et al.  Fast algorithm and implementation of 2-D discrete cosine transform , 1991 .

[39]  Joan L. Mitchell,et al.  JPEG: Still Image Data Compression Standard , 1992 .