Generalized current-voltage analysis and efficiency limitations in non-ideal solar cells: Case of Cu2ZnSn(SxSe1−x)4 and Cu2Zn(SnyGe1−y)(SxSe1−x)4

Detailed electrical characterization of nanoparticle based Cu2ZnSn(SxSe1−x)4 (CZTSSe) and Cu2Zn(SnyGe1−y)(SxSe1−x)4 (CZTGeSSe) solar cells has been conducted to understand the origin of device limitations in this material system. Specifically, temperature dependent current-voltage analysis has been considered, with particular application to the characterization of solar cells with non-ideal device behavior. Due to the presence of such non-ideal device behavior, typical analysis techniques—commonly applied to kesterite-type solar cells—are found to be insufficient to understand performance limitations, and an analysis methodology is presented to account for the non-idealities. Here, the origin of non-ideal device behavior is chiefly considered in terms of electrostatic and band gap potential fluctuations, low minority carrier lifetimes, temperature dependent band edges, high surface/bulk recombination rates, and tunneling enhanced recombination. For CZTSSe and CZTGeSSe, the main limitations to improved dev...

[1]  Yang Yang,et al.  Growth mechanisms of co‐evaporated kesterite: a comparison of Cu‐rich and Zn‐rich composition paths , 2014 .

[2]  R. Stratton,et al.  Field and thermionic-field emission in Schottky barriers , 1966 .

[3]  L. Stolt,et al.  Determination of dominant recombination paths in Cu(In,Ga)Se2 thin-film solar cells with ALD–ZnO buffer layers , 2005 .

[4]  A. Rothwarf,et al.  Effects of a voltage‐dependent light‐generated current on solar cell measurements: CuInSe2/Cd(Zn)S , 1984 .

[5]  D. Klaassen,et al.  A new recombination model for device simulation including tunneling , 1992 .

[6]  Supratik Guha,et al.  Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a TiN diffusion barrier , 2012 .

[7]  Charlotte Platzer-Björkman,et al.  A low-temperature order-disorder transition in Cu2ZnSnS4 thin films , 2014 .

[8]  M. Edoff,et al.  Understanding defect-related issues limiting efficiency of CIGS solar cells , 2009 .

[9]  Marc Meuris,et al.  Characterization of defects in 9.7% efficient Cu2ZnSnSe4-CdS-ZnO solar cells , 2013 .

[10]  Jürgen H. Werner,et al.  Radiative efficiency limits of solar cells with lateral band-gap fluctuations , 2004 .

[11]  Rommel Noufi,et al.  Co-Evaporated Cu2ZnSnSe4 Films and Devices , 2012 .

[12]  Tayfun Gokmen,et al.  Band tailing and efficiency limitation in kesterite solar cells , 2013 .

[13]  Mark S. Lundstrom,et al.  Analysis of temperature-dependent current-voltage characteristics for CIGSSe and CZTSSe thin film solar cells from nanocrystal inks , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[14]  A. Zunger,et al.  The electronic consequences of multivalent elements in inorganic solar absorbers: Multivalency of Sn in Cu2ZnSnS4 , 2010 .

[15]  S. Hegedus,et al.  Voltage dependent photocurrent collection in CdTe/CdS solar cells , 2007 .

[16]  P. Dale,et al.  The consequences of kesterite equilibria for efficient solar cells. , 2011, Journal of the American Chemical Society.

[17]  U. Rau,et al.  Fundamental Electrical Characterization of Thin‐Film Solar Cells , 2011 .

[18]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[19]  H. Schock,et al.  Distinction between bulk and interface states in CuInSe2/CdS/ZnO by space charge spectroscopy , 1998 .

[20]  R. Pässler Basic Model Relations for Temperature Dependencies of Fundamental Energy Gaps in Semiconductors , 1997 .

[21]  J. Phillips,et al.  Determining the voltage dependence of the light generated current in CuInSe/sub 2/-based solar cells using I-V measurements made at different light intensities , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[22]  C. Persson Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4 , 2010 .

[23]  A. Walsh,et al.  Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4 , 2010 .

[24]  Lars Stolt,et al.  A study of the influence of the Ga content on the long-term stability of Cu(In,Ga)Se2 thin film solar cells , 2003 .

[25]  Yang Yang,et al.  CZTS nanocrystals: a promising approach for next generation thin film photovoltaics , 2013 .

[26]  Uwe Rau,et al.  Electronic properties of CuGaSe2-based heterojunction solar cells. Part I. Transport analysis , 2000 .

[27]  A. Walsh,et al.  Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth‐Abundant Solar Cell Absorbers , 2013, Advanced materials.

[28]  D. Mitzi,et al.  Loss mechanisms in hydrazine-processed Cu2ZnSn(Se,S)4 solar cells , 2010 .

[29]  D. Mitzi,et al.  Minority carrier diffusion length extraction in Cu2ZnSn(Se,S)4 solar cells , 2013 .

[30]  Supratik Guha,et al.  The path towards a high-performance solution-processed kesterite solar cell ☆ , 2011 .

[31]  A. S. Kavasoglu,et al.  Tunnelling enhanced recombination in polycrystalline CdS/CdTe and CdS/Cu(In,Ga)Se2 heterojunction solar cells , 2005 .

[32]  D. Mitzi,et al.  Hydrazine-Processed Ge-Substituted CZTSe Solar Cells , 2012 .

[33]  H. Schock,et al.  Electronic loss mechanisms in chalcopyrite based heterojunction solar cells , 2000 .

[34]  H. Schock,et al.  On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum , 2010 .

[35]  M. Free,et al.  A study of energy band gap versus temperature for Cu2ZnSnS4 thin films , 2011, 1107.3890.

[36]  H. Hillhouse,et al.  Enhancing the performance of CZTSSe solar cells with Ge alloying , 2012 .

[37]  R. Scheer Activation energy of heterojunction diode currents in the limit of interface recombination , 2009 .

[38]  D. Mitzi,et al.  Progress towards marketable earth-abundant chalcogenide solar cells , 2011 .

[39]  K. Durose,et al.  Luminescence of Cu2ZnSnS4 polycrystals described by the fluctuating potential model , 2013 .

[40]  Rakesh Agrawal,et al.  Synthesis and characterization of 15% efficient CIGSSe solar cells from nanoparticle inks , 2015 .

[41]  Mark S. Lundstrom,et al.  Device comparison of champion nanocrystal-ink based CZTSSe and CIGSSe solar cells: Capacitance spectroscopy , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[42]  Jürgen H. Werner,et al.  Efficiency limitations of polycrystalline thin film solar cells: case of Cu(In,Ga)Se2 , 2005 .

[43]  D. Mitzi,et al.  Prospects and performance limitations for Cu–Zn–Sn–S–Se photovoltaic technology , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[44]  H. Schock,et al.  Distribution of Defects in Polycrytalline Chalcopyrite Thin Films , 1996 .

[45]  Cardona,et al.  Temperature dependence of the dielectric function and interband critical points in silicon. , 1987, Physical review. B, Condensed matter.

[46]  Tayfun Gokmen,et al.  Beyond 11% Efficiency: Characteristics of State‐of‐the‐Art Cu2ZnSn(S,Se)4 Solar Cells , 2013 .

[47]  D. Hariskos,et al.  New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .

[48]  Jürgen H. Werner,et al.  Barrier inhomogeneities at Schottky contacts , 1991 .

[49]  Tayfun Gokmen,et al.  Device characteristics of a 10.1% hydrazine‐processed Cu2ZnSn(Se,S)4 solar cell , 2012 .

[50]  C. Rincón,et al.  Temperature dependence of the optical energy band gap in CuIn3Se5 and CuGa3Se5 , 2003 .

[51]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[52]  Uwe Rau,et al.  Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges , 1999 .

[53]  Steven S. Hegedus,et al.  Thin‐film solar cells: device measurements and analysis , 2004 .

[54]  U. Rau Tunneling-enhanced recombination in Cu(In, Ga)Se2 heterojunction solar cells , 1999 .

[55]  A. Walsh,et al.  Compositional dependence of structural and electronic properties of Cu(2)ZnSn(S,Se)(4) alloys for thin film solar cells , 2011 .

[56]  D. Estève,et al.  A new Richardson plot for non-ideal schottky diodes , 1988 .

[57]  A. Walsh,et al.  Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds , 2009 .