Homological Dimensions of Gentle Algebras via Geometric Models

Let $A=kQ/I$ be a finite dimensional basic algebra over an algebraically closed field $k$ which is a gentle algebra with the marked ribbon surface $(\mathcal{S}_A,\mathcal{M}_A,\Gamma_A)$. It is known that $\mathcal{S}_A$ can be divided into some elementary polygons $\{\Delta_i\mid 1\le i\le d\}$ by $\Gamma_A$ which has exactly one side in the boundary of $\mathcal{S}_A$. Let $\mathfrak{C}(\Delta_i)$ be the number of sides of $\Delta_i$ belonging to $\Gamma_A$ if the unmarked boundary component of $\mathcal{S}_A$ is not a side of $\Delta_i$; otherwise, $\mathfrak{C}(\Delta_i)=\infty$, and let $\mathsf{f}\text{-}\Delta$ be the set of all non-$\infty$-elementary polygons and $\mathcal{F}_A$ (respectively, ${\mathsf{f}\text{-}\mathcal{F}}_A$) the set of all forbidden threads (respectively, of finite length). Then we have \begin{enumerate} \item[{\rm (1)}] The global dimension of $A=\max\limits_{1\leq i\leq d}{\mathfrak{C}(\Delta_i)}-1 =\max\limits_{\mathit{\Pi}\in\mathcal{F}_A} l(\mathit{\Pi})$, where $l(\mathit{\Pi})$ is the length of $\mathit{\Pi}$. \item[{\rm (2)}] The left and right self-injective dimensions of $A=$ \begin{center} $\begin{cases} 0,\ \mbox{\text{if {\it Q} is either a point or an oriented cycle with full relations};}\\ \max\limits_{\Delta_i\in{\mathsf{f}\text{-}\Delta}}\big\{1, {\mathfrak{C}(\Delta_i)}-1 \big\}= \max\limits_{\mathit{\Pi}\in{\mathsf{f}\text{-}\mathcal{F}}_A} l(\mathit{\Pi}),\ \mbox{\text{otherwise}.} \end{cases}$ \end{center} \end{enumerate} As a consequence, we get that the finiteness of the global dimension of gentle algebras is invariant under AG-equivalence. In addition, we get that the number of indecomposable non-projective Gorenstein projective modules over gentle algebras is also invariant under AG-equivalence.

[1]  Yu Zhou,et al.  A geometric model for the module category of a skew-gentle algebra , 2020, Mathematische Zeitschrift.

[2]  Pierre-Guy Plamondon,et al.  A complete derived invariant for gentle algebras via winding numbers and Arf invariants , 2019, Selecta Mathematica.

[3]  Chao Zhang,et al.  The Geometric Model of Gentle One-Cycle Algebras , 2021 .

[4]  K. Baur,et al.  A Geometric Model for the Module Category of a Gentle Algebra , 2018, International Mathematics Research Notices.

[5]  Ming Lu,et al.  Cohen–Macaulay Auslander algebras of gentle algebras , 2015, Communications in Algebra.

[6]  Pierre-Guy Plamondon,et al.  A geometric model for the derived category of gentle algebras , 2018, 1801.09659.

[7]  Y. Qiu,et al.  Cluster categories for marked surfaces: punctured case , 2013, Compositio Mathematica.

[8]  M. Kontsevich,et al.  Flat surfaces and stability structures , 2014, 1409.8611.

[9]  Martin Kalck Singularity categories of gentle algebras , 2012, 1207.6941.

[10]  T. Brustle,et al.  On the cluster category of a marked surface without punctures , 2010, 1005.2422.

[11]  D. Labardini-Fragoso Quivers with potentials associated to triangulated surfaces, Part II: Arc representations , 2009, 0909.4100.

[12]  Zhaoyong Huang,et al.  Torsionfree dimension of modules and self-injective dimension of rings , 2009, 0906.1253.

[13]  D. Labardini-Fragoso,et al.  Quivers with potentials associated to triangulated surfaces , 2008, 0803.1328.

[14]  C. Geiss,et al.  Combinatorial derived invariants for gentle algebras , 2006, math/0607348.

[15]  H. Merklen,et al.  Indecomposables in Derived Categories of Gentle Algebras , 2003 .

[16]  C. Ringel The repetitive algebra of a gentle algebra , 1997 .

[17]  Overtoun M. G. Jenda,et al.  Gorenstein injective and projective modules , 1995 .

[18]  M. Hoshino Algebras of finite self-injective dimension , 1991 .

[19]  H. Krause Maps between tree and band modules , 1991 .

[20]  D. Happel On Gorenstein Algebras , 1991 .

[21]  K. Erdmann Blocks of Tame Representation Type and Related Algebras , 1990 .

[22]  W. Crawley-Boevey,et al.  Maps between representations of zero-relation algebras , 1989 .

[23]  C. Ringel,et al.  Auslander-reiten sequences with few middle terms and applications to string algebrass , 1987 .

[24]  Burkhard Wald,et al.  Tame biserial algebras , 1985 .

[25]  M. Bridger,et al.  Stable Module Theory , 1969 .

[26]  C. Geiss,et al.  Gentle algebras are Gorenstein , 2022 .