Hyperentanglement for quantum telecommunications

We describe how hyperentanglement may be used to give orders of magnitude throughput improvement over singly entangled photon pairs, for some applications. Next we demonstrate the first measurement of hyperentangled photon pairs, both of which are at telecom wavelengths, via simultaneous polarization tomography and time-bin interference measurements. Without cryogenic cooling of the nonlinear element, we measure polarization entanglement with tangle of 0.4 ± 0.2 and time bin entanglement with visibility of 83% ± 6%, both exceeding classical thresholds by approximately two standard deviations.

[1]  Paul G. Kwiat,et al.  Beating the channel capacity limit for linear photonic superdense coding (Nature Physics (2008) 4, (282-286)) , 2008 .

[2]  F De Martini,et al.  All-versus-nothing nonlocality test of quantum mechanics by two-photon hyperentanglement. , 2005, Physical review letters.

[3]  Mark M. Wilde,et al.  Linear-optical hyperentanglement-assisted quantum error-correcting code , 2009 .

[4]  Marek Zukowski,et al.  All-versus-nothing violation of local realism by two-photon, four-dimensional entanglement. , 2005, Physical review letters.

[5]  Generation of high-flux hyperentangled photon pairs using a microstructure-fiber Sagnac interferometer , 2008 .

[6]  Akio Yoshizawa,et al.  Wavelength-multiplexed entanglement distribution , 2010 .

[7]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[8]  William J. Munro,et al.  On the measurement of qubits , 2005 .

[9]  Shih,et al.  Postselection-free energy-time entanglement. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[10]  N. Gisin,et al.  Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication , 1999 .

[11]  Akio Yoshizawa,et al.  Wavelength-multiplexed distribution of highly entangled photon-pairs over optical fiber. , 2008, Optics express.

[12]  H. Takesue Long-distance distribution of time-bin entanglement generated in a cooled fiber. , 2005, Optics express.

[13]  Paul G. Kwiat,et al.  Hyper-entangled states , 1997 .

[14]  Nathan K Langford,et al.  Generation of hyperentangled photon pairs. , 2005, Physical review letters.

[15]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[16]  W Tittel,et al.  Distribution of time-bin entangled qubits over 50 km of optical fiber. , 2004, Physical review letters.

[17]  H. Briegel,et al.  Entanglement purification and quantum error correction , 2007, 0705.4165.

[18]  Kyo Inoue,et al.  Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers , 2005 .

[19]  Harald Weinfurter,et al.  Embedded Bell-state analysis , 1998 .

[20]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.