Identifying cancer subtypes in glioblastoma by combining genomic, transcriptomic and epigenomic data
暂无分享,去创建一个
[1] Joshua M. Korn,et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.
[2] P. Green,et al. Modelling Heterogeneity With and Without the Dirichlet Process , 2001 .
[3] Zoubin Ghahramani,et al. Discovering transcriptional modules by Bayesian data integration , 2010, Bioinform..
[4] F. Markowetz,et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups , 2012, Nature.
[5] Zoubin Ghahramani,et al. Modeling and Visualizing Uncertainty in Gene Expression Clusters Using Dirichlet Process Mixtures , 2009, TCBB.
[6] Gary D Bader,et al. International network of cancer genome projects , 2010, Nature.
[7] H. Ishwaran,et al. Exact and approximate sum representations for the Dirichlet process , 2002 .
[8] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[9] M. Escobar,et al. Bayesian Density Estimation and Inference Using Mixtures , 1995 .
[10] D. B. Dahl. Bayesian Inference for Gene Expression and Proteomics: Model-Based Clustering for Expression Data via a Dirichlet Process Mixture Model , 2006 .
[11] Florian Markowetz,et al. Patient-Specific Data Fusion Defines Prognostic Cancer Subtypes , 2011, PLoS Comput. Biol..
[12] C. Antoniak. Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .
[13] K. Ickstadt,et al. Improved criteria for clustering based on the posterior similarity matrix , 2009 .
[14] David B. Dahl,et al. Sequentially-Allocated Merge-Split Sampler for Conjugate and Nonconjugate Dirichlet Process Mixture Models , 2005 .