Coherent Interferometry in Finely Layered Random Media

We study broadband, coherent interferometric array imaging (CINT) in finely lay- ered media in a regime with strong fluctuations. By coherent interferometric imaging we mean the backpropagation of time-windowed cross correlations of the array data. For waves propagating over long distances, there is statistical stabilization of the traces observed at the array. They have the form of a coherent signal that can be described by the O'Doherty-Anstey (ODA) theory, followed by long and noisy codas. We show that coherent interferometry exploits the time coherence in the data, leading to stable images. Moreover, we prove that in this regime only the ODA behavior plays a role in the imaging, and we quantify explicitly the resolution of CINT in terms of this time coherence and the array aperture. We illustrate the theory with numerical simulations.

[1]  B. Borden Mathematical problems in radar inverse scattering , 2002 .

[2]  Eliane Bécache,et al.  Étude d'un nouvel élément fini mixte permettant la condensation de masse , 1997 .

[3]  Knut Sølna,et al.  Time-Reversal Aperture Enhancement , 2003, Multiscale Model. Simul..

[4]  Patrick Joly,et al.  An Analysis of New Mixed Finite Elements for the Approximation of Wave Propagation Problems , 2000, SIAM J. Numer. Anal..

[5]  Akira Ishimaru,et al.  Experimental studies on circular SAR imaging in clutter using angular correlation function technique , 1999, IEEE Trans. Geosci. Remote. Sens..

[6]  Benjamin S. White,et al.  Statistics for pulse reflection from a randomly layered medium , 1987 .

[7]  W. Brown Synthetic Aperture Radar , 1967, IEEE Transactions on Aerospace and Electronic Systems.

[8]  George Papanicolaou,et al.  Frequency Content of Randomly Scattered Signals , 1991, SIAM Rev..

[9]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[10]  R. Burridge,et al.  The accuracy of the O'Doherty-Anstey approximation for wave propagation in highly disordered stratified media , 1995 .

[11]  Jean-Pierre Fouque,et al.  Pressure Fields Generated by Acoustical Pulses Propagating in Randomly Layered Media , 1998, SIAM J. Appl. Math..

[12]  George Papanicolaou,et al.  A limit theorem for turbulent diffusion , 1979 .

[13]  G. Papanicolaou,et al.  Theory and applications of time reversal and interferometric imaging , 2003 .

[14]  G. Papanicolaou,et al.  Interferometric array imaging in clutter , 2005 .

[15]  George Papanicolaou,et al.  A limit theorem with strong mixing in banach space and two applications to stochastic differential equations , 1973 .

[16]  Jack K. Cohen,et al.  Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion , 2001 .

[17]  George Papanicolaou,et al.  Ray theory for a locally layered random medium , 2000 .

[18]  Jean-Pierre Fouque,et al.  Spreading of a Pulse Travelling in Random Media , 1994 .

[19]  Margaret Cheney,et al.  A Mathematical Tutorial on Synthetic Aperture Radar , 2001, SIAM Rev..

[20]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[21]  P. Sheng,et al.  FREQUENCY CONTENT OF RANDOMLY SCATTERED SIGNALS II: INVERSION , 1990 .

[22]  Jon F. Claerbout,et al.  Fundamentals of Geophysical Data Processing: With Applications to Petroleum Prospecting , 1985 .

[23]  Josselin Garnier,et al.  Time-reversal refocusing for point source in randomly layered media , 2005 .

[24]  Josselin Garnier,et al.  Imaging in Randomly Layered Media by Cross-Correlating Noisy Signals , 2005, Multiscale Model. Simul..

[25]  Gregory Beylkin,et al.  Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform , 1985 .

[26]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[27]  Liliana Borcea,et al.  Adaptive interferometric imaging in clutter and optimal illumination , 2006 .

[28]  N. A. Anstey,et al.  Reflections on AMPLITUDES , 1971 .

[29]  Benjamin S. White,et al.  Probing a random medium with a pulse , 1989 .

[30]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .