Independence-Friendly Modal Logic. Studies in its Expressive Power and Theoretical Relevance.

The doctoral dissertation introduces independence-friendly (IF) modal logic as an extension of standard modal logic. Making use of the notion of uniform strategy, a game-theoretical interpretation of IF modal logic is formulated. It is shown that under this interpretation, IF modal logic has greater expressive power than standard modal logic, and can be translated into first-order logic. However, when restricted to a simple tense-logical setting (evaluation over strict linear orders), its expressive power coincides with standard tense logic. The syntax of IF modal logic can be modified to allow independence of modal operators from conjunctions and disjunctions. It is shown that the resulting modal logic can no longer be translated into first-order logic. Two further interpretations of the language of IF modal logic are given, one in terms of backwards-looking operators, the other algebraic. The dissertation contains an extensive discussion of tenses in linguis- tics, and explains how the 'backwards-looking operators' interpretation of IF tense logic makes it possible to formally distinguish between two types of independence appearing in connection with tense evaluation. It is argued that the linguistic critique against scope theories of tense becomes less appealing when this distinction is made.

[1]  Dov M. Gabbay,et al.  EXPRESSIVE FUNCTIONAL COMPLETENESS IN TENSE LOGIC , 1981 .

[2]  Wilfried Hodges,et al.  Some Strange Quantifiers , 1997, Structures in Logic and Computer Science.

[3]  David Kaplan Bob and Carol and Ted and Alice , 1973 .

[4]  Yoav Shoham,et al.  A propositional modal logic of time intervals , 1991, JACM.

[5]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .

[6]  L. T. F. Gamut Intensional logic and logical grammar , 1991 .

[7]  Norbert Hornstein,et al.  As Time Goes By: Tense and Universal Grammar , 1990 .

[8]  J. Hintikka The Principles of Mathematics Revisited: Introduction , 1996 .

[9]  Patrick Blackburn,et al.  Hybrid Languages and Temporal Logic , 1999, Log. J. IGPL.

[10]  Gabriel Sandu,et al.  On the logic of informational independence and its applications , 1993, J. Philos. Log..

[11]  Mürvet Enç,et al.  Towards a referential analysis of temporal expressions , 1986 .

[12]  J. Hintikka,et al.  Informational Independence as a Semantical Phenomenon , 1989 .

[13]  Jaakko Hintikka,et al.  Hyperclassical Logic (A.K.A. If Logic) and its Implications for Logical Theory , 2002, Bulletin of Symbolic Logic.

[14]  Barbara H. Partes Nominal and temporal anaphora , 1984 .

[15]  K. Jon Barwise,et al.  On branching quantifiers in English , 1979, J. Philos. Log..

[16]  Jouko A. Väänänen,et al.  On the semantics of informational independence , 2002, Log. J. IGPL.

[17]  H. Enderton Finite Partially-Ordered Quantifiers , 1970 .

[18]  D. Holdstock Past, present--and future? , 2005, Medicine, conflict, and survival.

[19]  Jaakko Hintikka Temporal discourse and semantical games , 1982 .

[20]  Mürvet Enç Anchoring conditions for tense , 1987 .

[21]  M. Makkai Admissible Sets and Infinitary Logic , 1977 .

[22]  Ben C. Moszkowski Some Very Compositional Temporal Properties , 1994, PROCOMET.

[23]  A. Rubinstein Modeling Bounded Rationality , 1998 .

[24]  J. C. Braddeld,et al.  Independence: Logics and Concurrency , 2000, CSL.

[25]  Peter Øhrstrøm,et al.  Temporal logic - from ancient ideas to artificial intelligence , 2010, Studies in linguistics and philosophy.

[26]  Wilbur John Walkoe,et al.  Finite Partially-Ordered Quantification , 1970, J. Symb. Log..

[27]  Yde Venema,et al.  Expressiveness and Completeness of an Interval Tense Logic , 1990, Notre Dame J. Formal Log..

[28]  Jaakko Hintikka,et al.  Quantum Logic as a Fragment of Independence-Friendly Logic , 2002, J. Philos. Log..

[29]  Julius Rudolph Weinberg Nicolaus of Autrecourt: A Study in 14th Century Thought , 1969 .

[30]  J. Hintikka Time and Necessity: Studies in Aristotle's Theory of Modality , 1973 .

[31]  Mark Reynolds,et al.  Axiomatisation and decidability ofF andP in cyclical time , 1994, J. Philos. Log..

[32]  Ian M. Hodkinson,et al.  Completeness , 2020, Mathematics of the Bond Market: A Lévy Processes Approach.

[33]  B. Partee Some Structural Analogies between Tenses and Pronouns in English , 1973 .

[34]  David R. Dowty Tenses, time adverbs, and compositional semantic theory , 1982 .

[35]  Tero Tulenheimo On IF Modal Logic and its Expressive Power , 2002, Advances in Modal Logic.

[36]  Sibylle B. Fröschle,et al.  Independence-Friendly Modal Logic and True Concurrency , 2002, Nord. J. Comput..

[37]  J.F.A.K. van Benthem,et al.  Tense Logic and Standard Logic , 1977 .

[38]  Jaakko Hintikka,et al.  No scope for scope , 1998 .

[39]  Ronald Fagin,et al.  Reasoning about knowledge , 1995 .

[40]  Fabio Pianesi,et al.  Tense and Aspect: From Semantics to Morphosyntax , 1997 .

[41]  Ben C. Moszkowski,et al.  Executing temporal logic programs , 1986, Seminar on Concurrency.

[42]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[43]  John Niemeyer Findlay,et al.  Time: A treatment of some puzzles , 1941 .

[44]  Jeroen Groenendijk,et al.  Logic, language and meaning: Vol. II: Intensional logic and logical grammar , 1991 .

[45]  J. Hintikka A Revolution in Logic , 1998 .

[46]  Uwe Reyle,et al.  From Discourse to Logic - Introduction to Modeltheoretic Semantics of Natural Language, Formal Logic and Discourse Representation Theory , 1993, Studies in linguistics and philosophy.

[47]  Bernard Comrie Aspect: An Introduction to the Study of Verbal Aspect and Related Problems , 1976 .

[48]  Jaakko Hintikka,et al.  Aspects of Compositionality , 2001, J. Log. Lang. Inf..