Applications of geometric discrepancy in numerical analysis and statistics

In this paper we discuss various connections between geometric discrepancy measures, such as discrepancy with respect to convex sets (and convex sets with smooth boundary in particular), and applications to numerical analysis and statistics, like point distributions on the sphere, the acceptance-rejection algorithm and certain Markov chain Monte Carlo algorithms.

[1]  J. Hammersley MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .

[2]  F. Pillichshammer,et al.  Optimal $\mathcal{L}_2$ discrepancy bounds for higher order digital sequences over the finite field $\mathbb{F}_2$ , 2012, 1207.5189.

[3]  A. Owen,et al.  Consistency of Markov chain quasi-Monte Carlo on continuous state spaces , 2011, 1105.1896.

[4]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[5]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[6]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[7]  Wolfgang Hörmann,et al.  Automatic Nonuniform Random Variate Generation , 2011 .

[8]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[9]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[10]  On the discrepancy of convex plane sets , 1988 .

[11]  Robert F. Tichy,et al.  Spherical designs, discrepancy and numerical integration , 1993 .

[12]  A. Lubotzky,et al.  Hecke operators and distributing points on the sphere I , 1986 .

[13]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[14]  E. Hlawka Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .

[15]  Harald Niederreiter,et al.  Discrepancy and convex programming , 1972 .

[16]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[17]  J. Matousek,et al.  Geometric Discrepancy: An Illustrated Guide , 2009 .

[18]  C. Aistleitner,et al.  Probabilistic Star Discrepancy Bounds for Double Infinite Random Matrices , 2013 .

[19]  F. Pillichshammer,et al.  Digital Nets and Sequences: Nets and sequences , 2010 .

[20]  W. Schmidt On irregularities of distribution vii , 1972 .

[21]  P. Gruber,et al.  Funktionen von beschränkter Variation in der Theorie der Gleichverteilung , 1990 .

[22]  M. Lacey,et al.  On the small ball inequality in three dimensions , 2006, math/0609815.

[23]  Distances of probability measures and uniform distribution mod 1 , 1975 .

[24]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[25]  Josef Dick,et al.  Point Sets on the Sphere $\mathbb{S}^{2}$ with Small Spherical Cap Discrepancy , 2011, Discret. Comput. Geom..

[26]  J. Dick,et al.  Discrepancy bounds for uniformly ergodic Markov chain quasi-Monte Carlo , 2013, 1303.2423.

[27]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[28]  P. L’Ecuyer,et al.  On Array-RQMC for Markov Chains: Mapping Alternatives and Convergence Rates , 2008 .

[29]  R. Caflisch,et al.  Quasi-Monte Carlo integration , 1995 .

[30]  E. Haacke Sequences , 2005 .

[31]  S. K. Zaremba,et al.  La discrépance isotrope et l'intégration numérique , 1970 .

[32]  H. Niederreiter,et al.  A construction of low-discrepancy sequences using global function fields , 1995 .

[33]  Harald Niederreiter,et al.  Methods for Estimating Discrepancy , 1972 .

[34]  M. Skriganov,et al.  Explicit constructions in the classical mean squares problem in irregularities of point distribution , 2002 .

[35]  Craig V. Spencer,et al.  Directional discrepancy in two dimensions , 2009, 0911.3971.

[36]  H. Niederreiter,et al.  Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .

[37]  M. Skriganov Harmonic analysis on totally disconnected groups and irregularities of point distributions , 2006 .

[38]  R. Caflisch,et al.  Smoothness and dimension reduction in Quasi-Monte Carlo methods , 1996 .

[39]  Xiaoqun Wang Improving the rejection sampling method in quasi-Monte Carlo methods , 2000 .

[40]  J. Dick,et al.  A Discrepancy Bound for a Deterministic Acceptance-Rejection Sampler , 2013, 1307.1185.

[41]  M. Lacey,et al.  On the Small Ball Inequality in All Dimensions , 2007, 0705.4619.

[42]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[43]  W. Schmidt Irregularities of distribution , 1968 .

[44]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[45]  Robert F. Tichy,et al.  Sequences, Discrepancies and Applications , 1997 .

[46]  W. Stute Convergence Rates for the Isotrope Discrepancy , 1977 .

[47]  J. Dick,et al.  A simple proof of Stolarsky’s invariance principle , 2011, 1101.4448.

[48]  H. Niederreiter,et al.  Diskrepanz und Distanz von Maßen bezüglich konvexer und Jordanscher Mengen , 1975 .

[49]  A. Lubotzky,et al.  Hecke operators and distributing points on S2. II , 1987 .

[50]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[51]  H. Niederreiter,et al.  Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .

[52]  Wolfgang M. Schmidt Irregularities of distribution. IV , 1969 .

[53]  K. Stolarsky Sums of distances between points on a sphere. II , 1972 .

[54]  M. Wand,et al.  Quasi-Monte Carlo for Highly Structured Generalised Response Models , 2008 .

[55]  J. Beck Sums of distances between points on a sphere — an application of the theory of irregularities of distribution to discrete Geometry , 1984 .

[56]  K. F. Roth On irregularities of distribution , 1954 .

[57]  J. Dick Discrepancy bounds for infinite-dimensional order two digital sequences over F2 , 2014 .

[58]  I. E. Shparlinskii On a completely uniform distribution , 1979 .