Applications of geometric discrepancy in numerical analysis and statistics
暂无分享,去创建一个
[1] J. Hammersley. MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .
[2] F. Pillichshammer,et al. Optimal $\mathcal{L}_2$ discrepancy bounds for higher order digital sequences over the finite field $\mathbb{F}_2$ , 2012, 1207.5189.
[3] A. Owen,et al. Consistency of Markov chain quasi-Monte Carlo on continuous state spaces , 2011, 1105.1896.
[4] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[5] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[6] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[7] Wolfgang Hörmann,et al. Automatic Nonuniform Random Variate Generation , 2011 .
[8] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[9] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[10] On the discrepancy of convex plane sets , 1988 .
[11] Robert F. Tichy,et al. Spherical designs, discrepancy and numerical integration , 1993 .
[12] A. Lubotzky,et al. Hecke operators and distributing points on the sphere I , 1986 .
[13] Fred J. Hickernell,et al. A generalized discrepancy and quadrature error bound , 1998, Math. Comput..
[14] E. Hlawka. Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .
[15] Harald Niederreiter,et al. Discrepancy and convex programming , 1972 .
[16] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[17] J. Matousek,et al. Geometric Discrepancy: An Illustrated Guide , 2009 .
[18] C. Aistleitner,et al. Probabilistic Star Discrepancy Bounds for Double Infinite Random Matrices , 2013 .
[19] F. Pillichshammer,et al. Digital Nets and Sequences: Nets and sequences , 2010 .
[20] W. Schmidt. On irregularities of distribution vii , 1972 .
[21] P. Gruber,et al. Funktionen von beschränkter Variation in der Theorie der Gleichverteilung , 1990 .
[22] M. Lacey,et al. On the small ball inequality in three dimensions , 2006, math/0609815.
[23] Distances of probability measures and uniform distribution mod 1 , 1975 .
[24] M. Rosenblatt. Remarks on a Multivariate Transformation , 1952 .
[25] Josef Dick,et al. Point Sets on the Sphere $\mathbb{S}^{2}$ with Small Spherical Cap Discrepancy , 2011, Discret. Comput. Geom..
[26] J. Dick,et al. Discrepancy bounds for uniformly ergodic Markov chain quasi-Monte Carlo , 2013, 1303.2423.
[27] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[28] P. L’Ecuyer,et al. On Array-RQMC for Markov Chains: Mapping Alternatives and Convergence Rates , 2008 .
[29] R. Caflisch,et al. Quasi-Monte Carlo integration , 1995 .
[30] E. Haacke. Sequences , 2005 .
[31] S. K. Zaremba,et al. La discrépance isotrope et l'intégration numérique , 1970 .
[32] H. Niederreiter,et al. A construction of low-discrepancy sequences using global function fields , 1995 .
[33] Harald Niederreiter,et al. Methods for Estimating Discrepancy , 1972 .
[34] M. Skriganov,et al. Explicit constructions in the classical mean squares problem in irregularities of point distribution , 2002 .
[35] Craig V. Spencer,et al. Directional discrepancy in two dimensions , 2009, 0911.3971.
[36] H. Niederreiter,et al. Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .
[37] M. Skriganov. Harmonic analysis on totally disconnected groups and irregularities of point distributions , 2006 .
[38] R. Caflisch,et al. Smoothness and dimension reduction in Quasi-Monte Carlo methods , 1996 .
[39] Xiaoqun Wang. Improving the rejection sampling method in quasi-Monte Carlo methods , 2000 .
[40] J. Dick,et al. A Discrepancy Bound for a Deterministic Acceptance-Rejection Sampler , 2013, 1307.1185.
[41] M. Lacey,et al. On the Small Ball Inequality in All Dimensions , 2007, 0705.4619.
[42] L. Devroye. Non-Uniform Random Variate Generation , 1986 .
[43] W. Schmidt. Irregularities of distribution , 1968 .
[44] H. Niederreiter. Low-discrepancy and low-dispersion sequences , 1988 .
[45] Robert F. Tichy,et al. Sequences, Discrepancies and Applications , 1997 .
[46] W. Stute. Convergence Rates for the Isotrope Discrepancy , 1977 .
[47] J. Dick,et al. A simple proof of Stolarsky’s invariance principle , 2011, 1101.4448.
[48] H. Niederreiter,et al. Diskrepanz und Distanz von Maßen bezüglich konvexer und Jordanscher Mengen , 1975 .
[49] A. Lubotzky,et al. Hecke operators and distributing points on S2. II , 1987 .
[50] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[51] H. Niederreiter,et al. Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .
[52] Wolfgang M. Schmidt. Irregularities of distribution. IV , 1969 .
[53] K. Stolarsky. Sums of distances between points on a sphere. II , 1972 .
[54] M. Wand,et al. Quasi-Monte Carlo for Highly Structured Generalised Response Models , 2008 .
[55] J. Beck. Sums of distances between points on a sphere — an application of the theory of irregularities of distribution to discrete Geometry , 1984 .
[56] K. F. Roth. On irregularities of distribution , 1954 .
[57] J. Dick. Discrepancy bounds for infinite-dimensional order two digital sequences over F2 , 2014 .
[58] I. E. Shparlinskii. On a completely uniform distribution , 1979 .