A 7.3 THz Cut-Off Frequency, Inline, Chalcogenide Phase-Change RF Switch Using an Independent Resistive Heater for Thermal Actuation

An inline chalcogenide phase change RF switch utilizing germanium telluride (GeTe) and driven by an integrated, electrically isolated thin film heater for thermal actuation has been fabricated. A voltage or current pulse applied to the heater terminals was used to transition the phase change material between the crystalline and amorphous states. An on-state resistance of 1.2 Ω (0.036 Ω-mm), with an off-state capacitance and resistance of 18.1 fF and 112 kΩ respectively were measured. This results in an RF switch cut-off frequency (Fco) of 7.3 THz, and an off/on DC resistance ratio of 9 × 104. The heater pulse power required to switch the GeTe between the two states was as low as 0.5W, with zero power consumption during steady state operation, making it a non-volatile RF switch. To the authors' knowledge, this is the first reported implementation of an RF phase change switch in a 4-terminal, inline configuration.