ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS
暂无分享,去创建一个
[1] Thomas J. R. Hughes,et al. Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements , 2013, Numerische Mathematik.
[2] John A. Evans,et al. Isogeometric divergence-conforming b-splines for the darcy-stokes-brinkman equations , 2013 .
[3] Garth N. Wells,et al. Energy Stable and Momentum Conserving Hybrid Finite Element Method for the Incompressible Navier-Stokes Equations , 2010, SIAM J. Sci. Comput..
[4] John A. Evans. Divergence-free B-spline discretizations for viscous incompressible flows , 2011 .
[5] Giancarlo Sangalli,et al. IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .
[6] Giancarlo Sangalli,et al. Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..
[7] Bernardo Cockburn,et al. An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations , 2011, J. Comput. Phys..
[8] G. Sangalli,et al. Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .
[9] T. Hughes,et al. Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .
[10] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[11] Thomas J. R. Hughes,et al. n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .
[12] Victor M. Calo,et al. Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .
[13] Guido Kanschat,et al. A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..
[14] Thomas J. R. Hughes,et al. Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .
[15] Thomas J. R. Hughes,et al. Conservation properties for the Galerkin and stabilised forms of the advection–diffusion and incompressible Navier–Stokes equations , 2005 .
[16] Guido Kanschat,et al. A locally conservative LDG method for the incompressible Navier-Stokes equations , 2004, Math. Comput..
[17] Shangyou Zhang,et al. A new family of stable mixed finite elements for the 3D Stokes equations , 2004, Math. Comput..
[18] Susanne C. Brenner,et al. Korn's inequalities for piecewise H1 vector fields , 2003, Math. Comput..
[19] O. Botella,et al. BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .
[20] M. Stynes,et al. Numerical methods for singularly perturbed differential equations : convection-diffusion and flow problems , 1996 .
[21] Lutz Tobiska,et al. Numerical Methods for Singularly Perturbed Differential Equations , 1996 .
[22] S. Mittal,et al. A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .
[23] T. A. Zang,et al. On the rotation and skew-symmetric forms for incompressible flow simulations , 1991 .
[24] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[25] K. Höllig. Finite element methods with B-splines , 1987 .
[26] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .
[27] H. B. Keller,et al. Driven cavity flows by efficient numerical techniques , 1983 .
[28] U. Ghia,et al. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .
[29] D. Arnold. An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .
[30] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[31] F. Thomasset. Finite element methods for Navier-Stokes equations , 1980 .
[32] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[33] M. Wheeler. An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .
[34] C. R. Deboor,et al. A practical guide to splines , 1978 .
[35] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[36] J. Douglas,et al. Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .
[37] L. L. Waters,et al. Atherogenesis: Initiating Factors , 1974, The Yale Journal of Biology and Medicine.
[38] P TaylorC.Hood,et al. Navier-Stokes equations using mixed interpolation , 1974 .
[39] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[40] D. Spalding. A Single Formula for the “Law of the Wall” , 1961 .
[41] L. Kovasznay. Laminar flow behind a two-dimensional grid , 1948, Mathematical Proceedings of the Cambridge Philosophical Society.