ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS

We develop divergence-conforming B-spline discretizations for the numerical solution of the steady Navier–Stokes equations. These discretizations are motivated by the recent theory of isogeometric discrete differential forms and may be interpreted as smooth generalizations of Raviart–Thomas elements. They are (at least) patchwise C0 and can be directly utilized in the Galerkin solution of steady Navier–Stokes flow for single-patch configurations. When applied to incompressible flows, these discretizations produce pointwise divergence-free velocity fields and hence exactly satisfy mass conservation. Consequently, discrete variational formulations employing the new discretization scheme are automatically momentum-conservative and energy-stable. In the presence of no-slip boundary conditions and multi-patch geometries, the discontinuous Galerkin framework is invoked to enforce tangential continuity without upsetting the conservation or stability properties of the method across patch boundaries. Furthermore, as no-slip boundary conditions are enforced weakly, the method automatically defaults to a compatible discretization of Euler flow in the limit of vanishing viscosity. The proposed discretizations are extended to general mapped geometries using divergence-preserving transformations. For sufficiently regular single-patch solutions subject to a smallness condition, we prove a priori error estimates which are optimal for the discrete velocity field and suboptimal, by one order, for the discrete pressure field. We present a comprehensive suite of numerical experiments which indicate optimal convergence rates for both the discrete velocity and pressure fields for general configurations, suggesting that our a priori estimates may be conservative. These numerical experiments also suggest our discretization methodology is robust with respect to Reynolds number and more accurate than classical numerical methods for the steady Navier–Stokes equations.

[1]  Thomas J. R. Hughes,et al.  Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements , 2013, Numerische Mathematik.

[2]  John A. Evans,et al.  Isogeometric divergence-conforming b-splines for the darcy-stokes-brinkman equations , 2013 .

[3]  Garth N. Wells,et al.  Energy Stable and Momentum Conserving Hybrid Finite Element Method for the Incompressible Navier-Stokes Equations , 2010, SIAM J. Sci. Comput..

[4]  John A. Evans Divergence-free B-spline discretizations for viscous incompressible flows , 2011 .

[5]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .

[6]  Giancarlo Sangalli,et al.  Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..

[7]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations , 2011, J. Comput. Phys..

[8]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[9]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[10]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[11]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[12]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[13]  Guido Kanschat,et al.  A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..

[14]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[15]  Thomas J. R. Hughes,et al.  Conservation properties for the Galerkin and stabilised forms of the advection–diffusion and incompressible Navier–Stokes equations , 2005 .

[16]  Guido Kanschat,et al.  A locally conservative LDG method for the incompressible Navier-Stokes equations , 2004, Math. Comput..

[17]  Shangyou Zhang,et al.  A new family of stable mixed finite elements for the 3D Stokes equations , 2004, Math. Comput..

[18]  Susanne C. Brenner,et al.  Korn's inequalities for piecewise H1 vector fields , 2003, Math. Comput..

[19]  O. Botella,et al.  BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .

[20]  M. Stynes,et al.  Numerical methods for singularly perturbed differential equations : convection-diffusion and flow problems , 1996 .

[21]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[22]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[23]  T. A. Zang,et al.  On the rotation and skew-symmetric forms for incompressible flow simulations , 1991 .

[24]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[25]  K. Höllig Finite element methods with B-splines , 1987 .

[26]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[27]  H. B. Keller,et al.  Driven cavity flows by efficient numerical techniques , 1983 .

[28]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[29]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[30]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[31]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[32]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[33]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[34]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[35]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[36]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[37]  L. L. Waters,et al.  Atherogenesis: Initiating Factors , 1974, The Yale Journal of Biology and Medicine.

[38]  P TaylorC.Hood,et al.  Navier-Stokes equations using mixed interpolation , 1974 .

[39]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[40]  D. Spalding A Single Formula for the “Law of the Wall” , 1961 .

[41]  L. Kovasznay Laminar flow behind a two-dimensional grid , 1948, Mathematical Proceedings of the Cambridge Philosophical Society.