VESPA: a community-driven Virtual Observatory in Planetary Science

The VESPA data access system focuses on applying Virtual Observatory (VO) standards and tools to Planetary Science. Building on a previous EC-funded Europlanet program, it has reached maturity during the first year of a new Europlanet 2020 program (started in 2015 for 4 years). The infrastructure has been upgraded to handle many fields of Solar System studies, with a focus both on users and data providers. This paper describes the broad lines of the current VESPA infrastructure as seen by a potential user, and provides examples of real use cases in several thematic areas. These use cases are also intended to identify hints for future developments and adaptations of VO tools to Planetary Science.

[1]  Trent M. Hare,et al.  The OpenPlanetary initiative , 2016 .

[2]  B. V. Semenov,et al.  A look towards the future in the handling of space science mission geometry , 2018 .

[3]  Brian M. Hynek,et al.  A new global database of Mars impact craters ≥1 km: 2. Global crater properties and regional variations of the simple‐to‐complex transition diameter , 2012 .

[4]  Françoise Roques,et al.  Base de Données d'Images Planétaires (BDIP): one century of planetary images: 1870-1977 , 2002 .

[5]  Franck Lefèvre,et al.  Vertical distribution of ozone on Mars as measured by SPICAM/Mars Express using stellar occultations , 2006 .

[6]  Todd King,et al.  A Standardized Interface for Obtaining Digital Planetary and Heliophysics Time Series Data , 2016 .

[7]  Francois Poulet,et al.  MarsSI: Martian surface data processing information system , 2018 .

[8]  M. Gangloff,et al.  Planetary Science Virtual Observatory architecture , 2014 .

[9]  Dimitar Misev,et al.  PlanetServer: Innovative approaches for the online analysis of hyperspectral satellite data from Mars , 2014 .

[10]  Lisa Gaddis,et al.  Third Planetary Data Workshop and The Planetary Geologic Mappers Annual Meeting : June 12-15, 2017, Flagstaff, Arizona , 2017 .

[11]  N. André,et al.  A propagation tool to connect remote-sensing observations with in-situ measurements of heliospheric structures , 2017, 1702.00399.

[12]  Clive G. Page,et al.  Definition of the Flexible Image Transport System (FITS), version 3.0 , 2010 .

[13]  Mark R. Calabretta,et al.  Representations of world coordinates in FITS , 2002, astro-ph/0207407.

[14]  J.-M. Glorian,et al.  CASSIS: a tool to visualize and analyse instrumental and synthetic spectra. , 2015 .

[15]  Mark Taylor,et al.  TOPCAT: Tool for OPerations on Catalogues And Tables , 2011 .

[16]  Franck Montmessin,et al.  A complete climatology of the aerosol vertical distribution on Mars from MEx/SPICAM UV solar occultations , 2013 .

[17]  D. Albert,et al.  GhoSST: A database of experimental data on UV to FIR spectroscopy of solids of astrophysical interest , 2012 .

[18]  UK,et al.  A model of force balance in Saturn's magnetodisc , 2009, 0909.1514.

[19]  Conor A. Nixon,et al.  Analysis of Cassini/CIRS limb spectra of Titan acquired during the nominal mission II: Aerosol extinction profiles in the 600–1420 cm−1 spectral range , 2010 .

[20]  Pierre Le Sidaner,et al.  The Auroral Planetary Imaging and Spectroscopy (APIS) service , 2015, Astron. Comput..

[21]  F. Ochsenbein,et al.  The VizieR database of astronomical catalogues , 2000, astro-ph/0002122.

[22]  Pierre Le Sidaner,et al.  The Planetary Virtual Observatory and Laboratory (PVOL) and its integration into the Virtual European Solar and Planetary Access (VESPA) , 2018 .

[23]  R. Marco Figuera,et al.  Online characterization of planetary surfaces: PlanetServer, an open-source analysis and visualization tool , 2017, ArXiv.

[24]  Mireille Louys,et al.  The Aladin Interactive Sky Atlas , 1998 .

[25]  Alain Coulais,et al.  Space Missions: Long Term Preservation of IDL-based Software using GDL , 2012 .

[26]  Michel Combes,et al.  The 2.5-12 μm spectrum of comet halley from the IKS-VEGA experiment , 1988 .

[27]  H. Clenet,et al.  MarsSIpulami: A Distributed Information System for Managing Data of the Surface of Mars , 2015 .

[28]  M. Louys,et al.  Browsing TAP Services with TAPHandle and DataLink , 2014 .

[29]  Michael Rudenko,et al.  Minor Planet Center: data processing challenges , 2015, Proceedings of the International Astronomical Union.

[30]  Reinhard Schlickeiser,et al.  Stochastic Electron Acceleration in Stellar Coronae , 1985 .

[31]  Michael Mommert,et al.  “TNOs are Cool”: A survey of the trans-Neptunian region - IX. Thermal properties of Kuiper belt objects and Centaurs from combined Herschel and Spitzer observations , 2013 .

[32]  Pierre Le Sidaner,et al.  The Virtual Observatory Registry , 2014, Astron. Comput..

[33]  Claire Vallat,et al.  The Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions , 2016 .

[34]  F. Forget,et al.  Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM , 2009 .

[35]  Paolo Giommi,et al.  MATISSE: A novel tool to access, visualize and analyse data from planetary exploration missions , 2016 .

[36]  M. Bouchemit,et al.  Virtual Planetary Space Weather Services offered by the Europlanet H2020 Research Infrastructure , 2017 .

[37]  Isa Barbarisi,et al.  Improving accessibility and discovery of ESA planetary data through the new planetary science archive , 2018 .

[38]  Alessandro Maturilli,et al.  The Berlin emissivity database (BED) , 2008 .

[39]  Jeremy Faden,et al.  Autoplot: a browser for scientific data on the web , 2010, Earth Sci. Informatics.

[40]  Ondrej Santolik,et al.  First results obtained by the Cluster STAFF experiment , 2003 .

[41]  Baptiste Cecconi,et al.  AMDA, Automated Multi-Dataset Analysis: A Web-Based Service Provided by the CDPP , 2010 .

[42]  Pierre Le Sidaner,et al.  Defining and cataloging exoplanets: the exoplanet.eu database , 2011, 1106.0586.

[43]  S. Martinez,et al.  SUMMARY AND RECOMMENDATIONS FROM THE 2015 ESAC PLANETARY GIS WORKSHOP , 2016 .

[44]  Benoit Carry,et al.  Miriade: A Service for Solar Sytem Ojects Ephemerides in the VO Framework. , 2009 .

[45]  J. E. Arlot,et al.  SSODNet: the solar system object database network project , 2007 .

[46]  Jonathan Tennyson,et al.  The virtual atomic and molecular data centre (VAMDC) consortium , 2016 .

[47]  Mirel Birlan,et al.  Modeling of asteroid spectra – M4AST , 2012 .

[48]  J. Thieman,et al.  Radio Jove: Jupiter Radio Astronomy for Citizens , 2014 .

[49]  Baptiste Cecconi,et al.  Enabling interoperability in planetary sciences and heliophysics: The case for an information model , 2018 .

[50]  Mireille Louys,et al.  The ALADIN interactive sky atlas - A reference tool for identification of astronomical sources , 2000 .

[51]  Ivo Busko Specview: a Java tool for spectral visualization and model fitting of multi-instrument data , 2002, SPIE Astronomical Telescopes + Instrumentation.

[52]  B. Schlesinger,et al.  Definition of the Flexible Image Transport System (FITS) , 2001 .

[53]  Esavo Team VOSpec: VO Spectral Analysis Tool , 2012 .

[54]  Philippe Bollard,et al.  SSHADE in H2020: Development of an European Database Infrastructure in Solid Spectroscopy , 2015 .

[55]  M. Gangloff,et al.  The EPN-TAP protocol for the Planetary Science Virtual Observatory , 2014, Astron. Comput..

[56]  Ugo Becciani,et al.  VO-compliant workflows and science gateways , 2015, Astron. Comput..

[57]  D. Ségransan,et al.  Data and Analysis Center for Exoplanets , 2015 .

[58]  Mark Taylor,et al.  SAMP: Application Messaging for Desktop and Web Applications , 2012 .

[59]  B. Bézard,et al.  Seasonal variations in Titan's middle atmosphere during the northern spring derived from Cassini/CIRS observations , 2015 .

[60]  Isa Barbarisi,et al.  ESA's Planetary Science Archive: Preserve and present reliable scientific data sets , 2018 .

[61]  Conor A. Nixon,et al.  Analysis of Cassini/CIRS limb spectra of Titan acquired during the nominal mission I. Hydrocarbons, nitriles and CO2 vertical mixing ratio profiles , 2010 .

[62]  Baptiste Cecconi,et al.  FITS Format for Planetary Surfaces: Bridging the Gap Between FITS World Coordinate Systems and Geographical Information Systems , 2016 .

[63]  Baptiste Cecconi,et al.  Standardization of Observatories, Instruments and Reference Frames for Planetary Sciences , 2015 .

[64]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[65]  Fuminori Tsuchiya,et al.  Juno-Ground-Radio Observation Support Tools , 2017 .

[66]  M. Gangloff,et al.  TREPS, a tool for coordinate and time transformations in space physics , 2018 .

[67]  D. Valls-Gabaud,et al.  CORONAGRAPHY AT PIC DU MIDI: PRESENT STATE AND FUTURE PROJECTS , 2012 .

[68]  Stephen R. Lewis,et al.  A climate database for Mars , 1999 .

[69]  C. Jacquey,et al.  Studying Sun–Planet Connections Using the Heliophysics Integrated Observatory (HELIO) , 2012 .

[70]  Mireille Louys,et al.  The Table Access Protocol: Providing standard access to astronomical data , 2014, Astron. Comput..

[71]  L. Cambrésy,et al.  Hierarchical progressive surveys - Multi-resolution HEALPix data structures for astronomical images, catalogues, and 3-dimensional data cubes , 2015, 1505.02291.

[72]  Baptiste Cecconi,et al.  Virtual observatory tools and amateur radio observations supporting scientific analysis of Jupiter radio emissions , 2016 .

[73]  M. Gangloff,et al.  Science data visualization in planetary and heliospheric contexts with 3DView , 2018 .