Effective elasto-plastic properties of inclusion-reinforced composites. Study of shape, orientation and cyclic response

A Hill-type incremental formulation for two-phase composites was recently proposed by Doghri and Ouaar [Int. J. Solids Struct. 40(7) (2003) 168 1]. We present a slightly improved version of the formulation and test it for non-spherical inclusions. The formulation enables the simulation of unloading and cyclic loadings. Two homogenization schemes are implemented: Mori-Tanaka (M-T) and an interpolative double-inclusion model (D-I). Two plasticity models which can be used for any phase are implemented: classical J(2) elasto-plasticity and Chaboche's model with non-linear kinematic and isotropic hardenings. All rate equations are discretized in time using implicit generalized mid-point schemes. A two-scale procedure for the simulation of composite structures is developed: a finite element (FE) program at macro-scale linked to the homogenization module at micro-scale. An extensive validation of the homogenization predictions against experimental data and direct unit cell FE simulations is conducted for several composite systems. (C) 2004 Elsevier Ltd. All rights reserved.

[1]  Said Ahzi,et al.  On the self-consistent modeling of elastic-plastic behavior of polycrystals , 1997 .

[2]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  Pedro Ponte Castañeda Exact second-order estimates for the effective mechanical properties of nonlinear composite materials , 1996 .

[4]  G. P. Tandon,et al.  A Theory of Particle-Reinforced Plasticity , 1988 .

[5]  H. Böhm,et al.  A thermo-elasto-plastic constitutive law for inhomogeneous materials based on an incremental Mori–Tanaka approach , 1999 .

[6]  P. P. Castañeda,et al.  Variational Estimates for the Elastoplastic Response of Particle-Reinforced Metal-Matrix Composites , 1994 .

[7]  S. Degallaix,et al.  Experimental and numerical study of the low-cycle fatigue behaviour of a cast metal matrix composite Al–SiCp , 2002 .

[8]  T. Bretheau,et al.  Homogénéisation en mécanique des matériaux, Tome 1 : Matériaux aléatoires élastiques et milieux périodiques , 2001 .

[9]  C. Hom Three-dimensional finite element analysis of plastic deformation in a whisker- reinforced metal matrix composite , 1992 .

[10]  A. Levy,et al.  Tensile properties of short fiber-reinforced SiC/Al composites: Part II. Finite-element analysis , 1990 .

[11]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[12]  S. Jansson,et al.  Homogenized nonlinear constitutive properties and local stress concentrations for composites with periodic internal structure , 1992 .

[13]  Sia Nemat-Nasser,et al.  Averaging theorems in finite deformation plasticity , 1999 .

[14]  Pedro Ponte Castañeda,et al.  A general constitutive theory for linear and nonlinear particulate media with microstructure evolution , 1998 .

[15]  J. Hutchinson,et al.  Bounds and self-consistent estimates for creep of polycrystalline materials , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[16]  Jiann-Wen Ju,et al.  Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal inhomogeneities. Part I: micromechanics-based formulation , 2001 .

[17]  J. Llorca,et al.  A self-consistent approach to the elasto-plastic behaviour of two-phase materials including damage , 2000 .

[18]  Pierre Suquet,et al.  Continuum Micromechanics , 1997, Encyclopedia of Continuum Mechanics.

[19]  L. Bardella A phenomenological constitutive law for the nonlinear viscoelastic behaviour of epoxy resins in the glassy state , 2001 .

[20]  M. Bornert,et al.  Homogénéisation en mécanique des matériaux, Tome 2 : Comportements non linéaires et problèmes ouverts , 2001 .

[21]  Michel Bornert,et al.  An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals , 2000 .

[22]  Issam Doghri,et al.  Fully implicit integration and consistent tangent modulus in elasto‐plasticity , 1993 .

[23]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[24]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[25]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[26]  Javier Segurado,et al.  On the accuracy of mean-field approaches to simulate the plastic deformation of composites , 2002 .

[27]  G. Kang,et al.  Tensile properties of randomly oriented short δ-Al2O3 fiber reinforced aluminum alloy composites: II. Finite element analysis for stress transfer, elastic modulus and stress–strain curve , 2002 .

[28]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[29]  L. Bardella An extension of the Secant Method for the homogenization of the nonlinear behavior of composite materials , 2003 .

[30]  J. Ju,et al.  Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal Inhomogeneities. Part II: applications , 2001 .

[31]  Subra Suresh,et al.  An experimental and numerical study of deformation in metal-ceramic composites , 1989 .

[32]  S. Ahzi,et al.  A self consistent approach of the large deformation polycrystal viscoplasticity , 1987 .

[33]  Amine Ouaar,et al.  Homogenization of two-phase elasto-plastic composite materials and structures: Study of tangent operators, cyclic plasticity and numerical algorithms , 2003 .

[34]  R. Hill On constitutive macro-variables for heterogeneous solids at finite strain , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[35]  D. Chandrasekharaiah,et al.  Mechanics of Deformable Solids: Linear, Nonlinear, Analytical and Computational Aspects , 2000 .

[36]  P. Suquet,et al.  Nonlinear Composites and Microstructure Evolution , 2001 .

[37]  Dimitris C. Lagoudas,et al.  On the numerical evaluation of Eshelby's tensor and its application to elastoplastic fibrous composites , 1990 .

[38]  J. Papazian,et al.  Tensile properties of short fiber-reinforced SiC/Ai composites: Part I. effects of matrix precipitates , 1990 .

[39]  Subra Suresh,et al.  On microstructural evolution and micromechanical modelling of deformation of a whisker-reinforced metal-matrix composite , 1989 .

[40]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[41]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[42]  S. Jansson Mechanical characterization and modeling of non-linear deformation and fracture of a fiber reinforced metal matrix composite , 1991 .

[43]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .