Localized-to-itinerant transition preceding antiferromagnetic quantum critical point and gapless superconductivity in CeRh0.5Ir0.5In5

[1]  Y. Komijani,et al.  Emergent Critical Charge Fluctuations at the Kondo Breakdown of Heavy Fermions. , 2019, Physical review letters.

[2]  Z. Ren,et al.  Tuning the Distance to a Possible Ferromagnetic Quantum Critical Point in A_{2}Cr_{3}As_{3}. , 2019, Physical review letters.

[3]  Y. J. Zhang,et al.  Band Dependent Interlayer f-Electron Hybridization in CeRhIn_{5}. , 2018, Physical review letters.

[4]  Y. J. Zhang,et al.  Direct observation of how the heavy-fermion state develops in CeCoIn 5 , 2016, 1610.06724.

[5]  E. Bauer,et al.  Unconventional and conventional quantum criticalities in CeRh0.58Ir0.42In5 , 2016, 1606.07848.

[6]  N. Hollmann,et al.  Quantitative study of the f occupation in CeMIn5 and other cerium compounds with hard X-rays , 2016, 1601.03270.

[7]  J. Crocker,et al.  Evolution of hyperfine parameters across a quantum critical point in CeRhIn 5 , 2015, 1507.05118.

[8]  J. Otsuki Competing d-Wave and p-Wave Spin-Singlet Superconductivities in the Two-Dimensional Kondo Lattice. , 2015, Physical review letters.

[9]  K. Miyake,et al.  Unconventional Quantum Criticality Due to Critical Valence Transition , 2014, 1405.2382.

[10]  Y. Kuramoto,et al.  Composite Orders and Lifshitz Transition of Heavy Electrons , 2014, 1403.5634.

[11]  C. Lin,et al.  Quantum criticality in electron-doped BaFe2−xNixAs2 , 2013, Nature Communications.

[12]  K. Miyake,et al.  Impurity Effect on Frequency Dependent Superconductivity: Odd-Frequency Pairing and Even-Frequency Pairing , 2012 .

[13]  D. Pines,et al.  Emergent states in heavy-electron materials , 2012, Proceedings of the National Academy of Sciences.

[14]  Xin Lu,et al.  Heat-capacity measurements of energy-gap nodes of the heavy-fermion superconductor CeIrIn5 deep inside the pressure-dependent dome structure of its superconducting phase diagram. , 2011, Physical review letters.

[15]  S. Kawasaki,et al.  Antiferromagnetic spin fluctuations above the dome-shaped and full-gap superconducting states of LaFeAsO1-xFx revealed by (75)As-nuclear quadrupole resonance. , 2011, Physical review letters.

[16]  E. Abrahams,et al.  Quantum criticality in the iron pnictides and chalcogenides , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  Q. Si,et al.  Heavy Fermions and Quantum Phase Transitions , 2010, Science.

[18]  P. Coleman,et al.  Frustration and the Kondo Effect in Heavy Fermion Materials , 2010, 1007.1723.

[19]  Y. Tokunaga,et al.  One-component description of magnetic excitations in the heavy-fermion compound CeIrIn 5 , 2010 .

[20]  K. Miyake,et al.  Sharp Valence Change as Origin of Drastic Change of Fermi Surface and Transport Anomalies in CeRhIn5 under Pressure , 2010, 1001.2598.

[21]  E. Bauer,et al.  Magnetic excitations in the kondo liquid: superconductivity and hidden magnetic quantum critical fluctuations. , 2009, Physical review letters.

[22]  E. Bauer,et al.  Probing the nodal gap in the pressure-induced heavy fermion superconductor CeRhIn5. , 2008, Physical review letters.

[23]  Z. Fisk,et al.  Probing the electronic structure of pure and doped CeMIn5 (M=Co,Rh,Ir) crystals with nuclear quadrupolar resonance , 2008 .

[24]  K. Shimizu,et al.  Pressure-induced unconventional superconductivity in the heavy-fermion antiferromagnet CeIn3 : An 115In-NQR study under pressure , 2008, 0802.2150.

[25]  S. Kawasaki,et al.  Quantum phase diagram of antiferromagnetism and superconductivity with a tetracritical point inCeRhIn5in zero magnetic field , 2007 .

[26]  M. Ogata,et al.  Fermi-surface reconstruction without breakdown of Kondo screening at the quantum critical point. , 2007, Physical review letters.

[27]  M. Vojta,et al.  Fermi-liquid instabilities at magnetic quantum phase transitions , 2006, cond-mat/0606317.

[28]  L. Gor’kov,et al.  Gapless Fermi surfaces in superconducting Ce Co In 5 , 2006, cond-mat/0606191.

[29]  M. Salamon,et al.  Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5 , 2006, Nature.

[30]  Q. Si Global magnetic phase diagram and local quantum criticality in heavy fermion metals , 2006, cond-mat/0601001.

[31]  D. Braithwaite,et al.  Coexistence of antiferromagnetism and superconductivity in CeRhIn5 under high pressure and magnetic field , 2005, cond-mat/0512078.

[32]  I. Swainson,et al.  Novel coexistence of superconductivity with two distinct magnetic orders. , 2005, Physical review letters.

[33]  H. Harima,et al.  A Drastic Change of the Fermi Surface at a Critical Pressure in CeRhIn5: dHvA Study under Pressure , 2005 .

[34]  S. Kawasaki,et al.  Enhancing the superconducting transition temperature of the heavy fermion compound CeIrIn5 in the absence of spin correlations. , 2005, Physical review letters.

[35]  J. Thompson,et al.  Coexistence of antiferromagnetic order and unconventional superconductivity in heavy-fermion CeRh1-xIrxIn5 compounds: Nuclear quadrupole resonance studies , 2004, cond-mat/0408006.

[36]  V. Sidorov,et al.  Two Superconducting Phases in CeRh1 xIrxIn5 , 2004, cond-mat/0405636.

[37]  H. Harima,et al.  Electronic structure and electric field gradient of RIn3 and RTIn5 (R=La and Ce, T= Co, Rh and Ir) , 2004 .

[38]  N. Curro,et al.  Scaling in the emergent behavior of heavy-electron materials , 2004, cond-mat/0402179.

[39]  K. Ueda,et al.  Antiferromagnetic spin fluctuation and superconductivity , 2003 .

[40]  K. Tanabe,et al.  Magnetism and superconductivity in CeRhIn5 under chemical and hydrostatic pressures , 2003 .

[41]  H. Kohno,et al.  Realization of Odd-Frequency p-Wave Spin-Singlet Superconductivity Coexisting with Antiferromagnetic Order near Quantum Critical Point , 2003, cond-mat/0302532.

[42]  Q. Si,et al.  Local fluctuations in quantum critical metals , 2002, cond-mat/0202414.

[43]  M. Maple,et al.  NMR and NQR studies of the heavy fermion superconductors CeTIn{sub 5} (T=Co and Ir) , 2001 .

[44]  J. Schmalian,et al.  Quantum-critical theory of the spin-fermion model and its application to cuprates: Normal state analysis , 2001, cond-mat/0107421.

[45]  S. Kawasaki,et al.  Pressure-induced anomalous magnetism and unconventional superconductivity in CeRhIn 5 : 115 In-NQR study under pressure , 2001 .

[46]  T. Oguchi Electronic band structure and structural stability of LaBiPt , 2001 .

[47]  K. Tanabe,et al.  Unique spin dynamics and unconventional superconductivity in the layered heavy fermion compound CeIrIn5: NQR evidence. , 2001, Physical review letters.

[48]  Z. Fisk,et al.  Coexistence of magnetism and superconductivity in CeRh 1 − x Ir x In 5 , 2001, cond-mat/0101316.

[49]  Z. Fisk,et al.  A new heavy-fermion superconductor CeIrIn5: A relative of the cuprates? , 2000, cond-mat/0012261.

[50]  Q. Si,et al.  Locally critical quantum phase transitions in strongly correlated metals , 2000, Nature.

[51]  Fisk,et al.  Pressure-induced superconductivity in quasi-2D CeRhIn5 , 2000, Physical review letters.

[52]  Georges,et al.  Coherence scale of the kondo lattice , 2000, Physical review letters.

[53]  N. Mathur,et al.  Magnetically mediated superconductivity in heavy fermion compounds , 1998, Nature.

[54]  K. Maki,et al.  Impurity scattering in d-wave superconductivity. Unitarity limit versus Born limit , 1998 .

[55]  S. Haas,et al.  Extended gapless regions in disordered d x 2 − y 2 wave superconductors , 1997, cond-mat/9703082.

[56]  K. Ishida,et al.  NMR studies of high Tc superconductors , 1996 .

[57]  K. Maki,et al.  Impurity scattering in d+s wave superconductivity , 1996 .

[58]  K. Ishida,et al.  Local Hole Distribution in the CuO2 Plane of High-Tc Cu-Oxides Studied by Cu and Oxygen NQR/NMR , 1995 .

[59]  Schroeder,et al.  Non-Fermi-liquid behavior in a heavy-fermion alloy at a magnetic instability. , 1994, Physical review letters.

[60]  A. Millis,et al.  Effect of a nonzero temperature on quantum critical points in itinerant fermion systems. , 1993, Physical review. B, Condensed matter.

[61]  Miranda,et al.  Possible realization of odd-frequency pairing in heavy fermion compounds. , 1993, Physical review letters.

[62]  Abrahams,et al.  New class of singlet superconductors which break the time reversal and parity. , 1992, Physical review. B, Condensed matter.

[63]  D. Vollhardt,et al.  Resonant impurity scattering in heavy fermion superconductors , 1986 .

[64]  S. Doniach The Kondo lattice and weak antiferromagnetism , 1977 .

[65]  John A. Hertz,et al.  Quantum critical phenomena , 1976 .

[66]  V. Berezinskiǐ New model of the anisotropic phase of superfluid He3 , 1974 .

[67]  T. Moriya The Effect of Electron-Electron Interaction on the Nuclear Spin Relaxation in Metals , 1963 .

[68]  Lev P. Gor'kov,et al.  CONTRIBUTION TO THE THEORY OF SUPERCONDUCTING ALLOYS WITH PARAMAGNETIC IMPURITIES , 1960 .

[69]  Tatsuo C. Kobayashi,et al.  Fermi Surface, Magnetic and Superconducting Properties of LaRhIn5 and CeTIn5 (T: Co, Rh and Ir) , 2002 .

[70]  K. Miyake,et al.  A route to small Drude weight in metals with nested spin fluctuations and enhanced impurity scattering associated with quantum critical phenomena , 2001 .

[71]  C. Varma,et al.  Transport and Thermal Properties of Heavy-Fermion Superconductors: A Unified Picture , 1993 .

[72]  守谷 亨 Spin fluctuations in itinerant electron magnetism , 1985 .

[73]  Yoshinori Takahashi,et al.  Spin fluctuations in itinerant electron magnetism , 1985 .

[74]  D. MacLaughlin,et al.  NUCLEAR SPIN--LATTICE RELAXATION IN PURE AND IMPURE INDIUM. I. NORMAL STATE. , 1971 .